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Generators of the Poincaré group, for a free massive scalar field, are
usually expressed in the momentum space. In this work we perform
a transformation of these generators into the coordinate space. This
(spatial)-position space is spanned by eigenvectors of the Newton-Wigner-
Pryce operator. The motivation is twofold. First, we want to investigate
the localization of a relativistic particle. Furthermore, we need a deeper
understanding of the commutative spatial coordinate space in QFT, in
order to investigate the non-commutative version thereof.

Los generadores del grupo de Poincaré, para un campo escalar masivo li-
bre, se suelen expresar en el espacio de momentos. En este trabajo realiza-
mos una transformación de estos generadores al espacio de coordenadas.
Este espacio de posiciones (espaciales) es genearado por eigenvctores
del operador Newton-Wigner-Pryce. La motivación es doble. Primero,
queremos investiar la localización de una partícula relativista. Además
necesitamos un entendimiento más profundo del espacio de coordenadas
espaciales conmutativo de la TCC para poder investigar su versión no
conmutativa.
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I | INTRODUCTION

Form an algebraic point of view, standard problems in quantum mechanics can be described in two
spaces,the momentum and the coordinate space. These spaces are generated by two complimentary ob-
servables, which are each represented by self-adjoint operators. These operators are the momentum and
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REMARKS ON QFT IN THE COORDINATE SPACE

the coordinate operator. In particular, the spaces they generate consist of their respective eigenvectors.
Both spaces are equally relevant for investigation and the choice usually depends on the nature of the
problem.

Nevertheless, due to the complementarity, it is difficult, if not impossible, to understand quantum
mechanics from both perspectives at the same time. In a letter from Pauli to Heisenberg (19. October
1926), there is the famous quote describing this particular problem: .One can see the world with the
p-eye or one can see the world with the x-eye, if one opens both eyes at once, one becomes crazy."

However, in quantum field theory (QFT) on Minkowski space the world is mostly seen through the
eye of momentum space. This is partly due to the Wigner classification in terms of unitary, irreducible
representations of the Poincaré group. Hence, most work is done in the momentum basis and the
conjugate basis of the momentum, i.e. the spatial coordinate space is, for the most part, overlooked.

It should be noted that there exists an appropriate operator, whose eigenstates span the spatial position
space. It is in literature mostly referred to as the Newton-Wigner-Pryce (NW)-operator, see (Pryce,
1948), (Newton and Wigner, 1949), (Schweber, 1961), (Jordan, 1980), (Sibold and Solard, 2009) and
(Much, 2015). The importance of these states relies on the fact that they can be used to calculate the
probability amplitude of finding a particle at a certain spatial-region at time t. Moreover, the second
quantization of this operator allows us to calculate the probability amplitude of finding k-particles at
certain spatial-positions at time t.

The motivation to perform investigations in the coordinate space, comes from the desire to understand
and investigate the non-commutative version thereof. Hence, concerning investigations in QFT that
assume a constant non-commutative space (without the involvement of time) the coordinate space is of
great importance. In particular, it is the space where non-commutativity is introduced. Therefore, in
order to understand how the Poincaré group acts or which form the generators take on non-commutative
spaces, in a quantum field theoretical context, we first need to investigate the commutative framework.

Therefore, in this work we open the other eye, i.e. take a first step in this direction by expressing
second-quantized quantities of the Poincaré algebra in the coordinate basis. In particular, we express
generators of the respective algebras in terms of Fock space operators, which are usually written in the
momentum space, and change the basis to the coordinate space. This is done by using the eigenvectors
and corresponding ladder operators of the spatial coordinate operator. Moreover, we investigate how
the coordinate space behaves under transformations of the Poincaré group.

It is important to point out that there is a clear distinction between the so-called configuration space
(see (Schweber, 1961, Chapter 7)) and the complimentary space of the momentum, i.e. the coordinate
space. In QM these two spaces are equal, however in the QFT-case these two cases are different, but
related by an integral transformation.

The paper is organized as follows; Section two comprises the preliminaries, where we define the Fock
space of the free scalar field and the algebra of the Fourier transformed ladder operators. The third
section gives a treatment of the Newton-Wigner-Pryce operator, i.e. the respective spatial-position
coordinate operator. In section four we transform the Poincaré algebra of a massive scalar field into the
coordinate space. Section five investigates the transformation behavior of the coordinate space under
the Poincaré group.
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REMARKS ON QFT IN THE COORDINATE SPACE

Conventions I.1. We use d = n+ 1, for n ∈ N and the Greek letters are split into µ, ν = 0, . . . ,n.
Moreover, we use Latin letters for the spatial components which run from 1, . . . ,n and we choose the
following convention for the Minkowski scalar product of d-dimensional vectors, a ·b = a0b0 +akbk =
a0b0−~a ·~b, i.e. η jk = diag(−1,−1,−1).

II | PRELIMINARIES

1 | Bosonic Fock Space and Fourier-Transformation

The (n+1)-dimensional (n∈N) relativistic Bosonic Fock space is defined in the following. Let a particle
have momentum p ∈ Rn. Then the energy of a massive particle is ωp =+

√
p2 +m2. In addition, the

Lorentz-invariant measure is given by dnµ(p) = dnp/(2ωp).

Definition The Bosonic Fock space F+(H ) is defined as in (Bratteli and Robinson, 1996):

F+(H ) =
∞⊕

k=0

H +
k ,

where H0 = C and the symmetric k-particle subspaces are given as

H +
k = {Ψk : H1×·· ·×H1︸ ︷︷ ︸

k−times

→ C symmetric|

‖Ψk‖2 =
∫

dnµ(p1)· · ·
∫

dnµ(pk)|Ψk(p1, . . .pk)|2 < ∞},

with H1 being defined by

H1 = {Ψ : H+
m → C|‖Ψ‖2 =

∫
dnµ(p)|Ψ(p)|2 < ∞},

where H+
m is the orbit

H+
m := {p ∈ Rn+1|p2 = m2, p0 > 0}.

The ladder operators a,a∗ for this particular space are defined as follows.

Definition The covariant particle annihilation and creation operators are defined by their action on
k-particle wave functions,

(ac( f )Ψ)k(p1, . . . ,pk) =
√

k+1
∫

dnµ(p) f (p)Ψk+1(p,p1, . . . ,pk)

(ac( f )∗Ψ)k(p,p1, . . . ,pk) =


0, k = 0

1√
k

k

∑
i=1

f (pi)Ψk−1(p1, . . . ,pi−1,pi+1, . . . ,pk), k > 0

with f ∈H1 and Ψk ∈H +
k . The commutator relations of ac( f ),ac( f )∗ follow immediately and are

given as

[ac( f ),ac(g)∗] = ( f ,g) =
∫

dnµ(p) f (p)g(p), [ac( f ),ac(g)] = 0 = [ac( f )∗,ac(g)∗]
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REMARKS ON QFT IN THE COORDINATE SPACE

Particle annihilation and creation operators with sharp momentum are introduced as operator valued
distributions and are given by

ac( f ) =
∫

dnµ(p) f (p)ac(p), ac( f )∗ =
∫

dnµ(p) f (p)a∗c(p),

where the particle annihilation and creation operators with sharp momentum satisfy the following
commutator relations

[ac(p),a∗c(q)] = 2ωpδ
n(p−q), [ac(p),ac(q)] = 0 = [a∗c(p),a

∗
c(q)] (1)

From a book keeping point of view, the noncovariant representation of the annihilation and creation
operators given as,

a(p) :=
ac(p)√

2ωp
, a∗(p) :=

a∗c(p)√
2ωp

,

is easier to handle. Hence, in the following sections, when explicit calculations are performed, we use
the non-covariant representation. In order to give the base change of the infinitesimal generators of
the Poincaré group, in terms of the Fourier-transformed creation and annihilation operators, we first
explicitly define the base change.

Definition Fourier-transformation
The base change to the Fourier-transformed creation and annihilation operators is given by,

a(p) = (2π)−n/2
∫

dnxeipkxk
ã(x), a∗(p) = (2π)−n/2

∫
dnxe−ipkxk

ã∗(x).

From the commutation relation between the two operators a and a∗ we can deduce the relations for the
Fourier-transformed operators,

δ
n(p−q) = [a(p),a∗(q)] = (2π)−n

∫∫
dnxdnyeipkxk

e−iqkyk
[ã(x), ã∗(y)].

Hence the solution of the commutation relations of the coordinate space creation and annihilation
operators is given, as follows

[ã(x), ã∗(y)] = δ
n(x−y).

The inverse transformations are given by,

ã(x) = (2π)−n/2
∫

dnpe−ipkxk
a(p), ã∗(x) = (2π)−n/2

∫
dnpeipkxk

a∗(p). (2)

This commutator could also been have obtained by taking the CR’s (commutator relations) of the
smeared operators into account. Moreover, on eigenvectors of the coordinate operator, the Fourier-
transformed creation and annihilation operators act ã, ã∗ as ladder operators. Note that the definition of
the Fourier-transformed operators does not explicitly depend on the mass.
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2 | Constantly Used Integrals

In order to make this work self-contained we give the general formula for certain Fourier-transformed
functions, (Gel’fand and Shilov, 1964, Chapter III, Section 2.8)

P̃λ =
∫

dnp
(
|~p|2 +m2)λ

exp
(
−i pkzk

)
(3)

=
2λ+1(2π)

1
2 n

Γ(−λ)

(
m
|~z|

) 1
2 n+λ

K 1
2 n+λ

(m|~z|),

where K denotes the modified Bessel-functions of second order and Γ is the Gamma function.

III | NEWTON-WIGNER-PRYCE OPERATOR

As already pointed out in the introduction, the appropriate (spatial)-position operator for the Klein-
Gordon field is given by the so-called Newton-Wigner-Pryce operator, (Pryce, 1948) and (Newton and
Wigner, 1949). For the one-particle case it is given by the following action one a one-particle wave
function in momentum space, (Schweber, 1961, Chapter 3c, Equation 35)

(X jϕ)(p) =−i

(
p j

2ω2
p
+

∂

∂p j

)
ϕ(p), (4)

where here we use the covariant representation and normalization, i.e. the observable X j is represented
as a self-adjoint operator w.r.t. the H1-scalar product, i.e. w.r.t. to the measure dnµ(p). For the free (rela-
tivistic) scalar field the eigenfunctions of the Newton-Wigner-Pryce operator, which are simultaneously
the localized wave functions at time x0 = 0, are given by, (Schweber, 1961, Chapter 3, Equation 38)

Ψx,0(p) = (2π)−n/2 e−ip·x (2ωp)
1/2.

They are of physical importance from the following point of view. Let a particle be in a state Φ(p)
at time t = 0, then the probability amplitude that a position measurement will find the particle at x is
given by, (Schweber, 1961, Chapter 3, Equation 44)

〈Ψx,Φ〉=
∫

dnµ(p)Ψx,0(p)Φ(p).

In (Sibold and Solard, 2009), (Much, 2013) and (Much, 2015) a second-quantized version of this
operator was given. Hence, the k-particle generalization of the Newton-Wigner-Pryce operator can be
defined. Particularly, it can be obtained by the Fourier-transformation of the spatial momentum operator.

It is given as a self-adjoint operator on the domain
k⊗

i=1

S (Rn), with S (Rn) denoting the Schwartz

space, as follows, (Much, 2013; Sibold and Solard, 2009)

X j =−i
∫

dnpa∗(p)
∂

∂p j a(p), (5)

where the second-quantized momentum operator, is given as a self-adjoint operator on the domain
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k⊗
i=1

S (Rn) and in terms of the ladder operators as

Pµ =
∫

dnp pµ a∗(p)a(p)

The commutator of the spatial-momentum operator and the NWP-operator is simply the second-
quantized Heisenberg-Weyl relation, see (Sibold and Solard, 2009) or (Much, 2015),

[X j,Pk] =−iη jkN, (6)

where N is the particle-number operator represented in Fock-space as

N =
∫

dnpa∗(p)a(p). (7)

Remark In the last commutator relation the zero component of the coordinate operator is missing.
The issue will be addressed in the following section more thoroughly, however let us refer the reader
to the following works about this subject and related Ansätze to solve it, (Sibold and Solard, 2009),
(Sibold and Burkhard, 2010), (Much, 2015) and (Much and Vergara, 2017).

In what follows we give the form and proof of the coordinate operator in coordinate space.

Lemma 1. The Newton-Wigner-Pryce operator has the following coordinate space representation,

X j =
∫

dnxx j ã∗(x)ã(x)

Demostración. The proof is done by changing from the momentum basis to the coordinate basis, i.e.

X j =−i
∫

dnpa∗(p)
∂

∂p j a(p)

=−i(2π)−n
∫

dnp
∫

dnxe−iprxr
ã∗(x)

∫
dny

(
∂

∂p j eipkyk
)

ã(y)

= (2π)−n
∫∫

dnxdnyy j

(∫
dnpe−ipk(x−y)k

)
︸ ︷︷ ︸

(2π)nδ(x−y)

ã∗(x)ã(y),

where in the last lines we performed the derivative and integrated over the delta distribution.

Next, we want to compare the second-quantized operator with the k-particle extension in literature and
draw attention to the distinction between coordinate space and configuration space (see (Schweber,
1961, Chapter 7)). In order to do so let us introduce the configuration space in QFT. For a free scalar
field a one particle state is given by

|x〉= φ
−(x)|0〉=

∫
dnµ(p)eipxa∗c(p)|0〉=

∫
dnµ(p)eipx|p〉,

where φ
−(x) contains only negative-frequency parts of the Klein-Gordon field at a space-time point x.

Moreover it should be noted that the following expressions are heuristic, and only make sense when
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suitably smeared with a test function. One can think of the configuration space as the space spanned by
vectors,

|x1, · · · ,xk〉= (k!)−1/2
φ
−(x1) · · ·φ−(xk)|0〉,

where the vector |0〉 is the vacuum. The k-particle Fock-space amplitude for a vector |Ψ〉 is given by
the scalar product with the configurations space vectors, i.e.

Ψ
(k)(x1, · · · ,xk) = (k!)−1/2〈0|φ+(x1) · · ·φ+(xk)|Ψ〉,

where φ
+(x) contains only positive-frequency parts of the Klein-Gordon field at a point x. From a

physical point of view, this is not the probability amplitude for finding k-particle at position x1 · · ·xk at
time x0 = x10 = · · ·xk0. But it is rather the probability amplitude for finding k-particle at time x0. Hence,
in order to find the quantity, which gives as the probability amplitude for finding k-particle at positions
x1 · · ·xk at time x0 = x10 · · ·xk0, as we did before for one-particle, we introduce the following operator,
(Schweber, 1961, Chapter 7, Equation 99),

φ1(x) =
∫

dnµ(p)Ψx,x0(p)ac(p) (8)

= (2π)−n/2
∫

dnµ(p)eip·x (2ωp)
1/2ac(p), (9)

and apply k of them on |Φ1〉 and the vacuum as follows,

Φ
1((x0,x1), · · · ,(x0,xk)) = (k!)−1/2〈0|φ1(x0,x1) · · ·φ1(x0,xk)|Φ1〉.

The discussion of amplitudes as probabilities at time x0 makes sense naturally when the above ex-
pressions are smeared, i.e. by integrating over a spatial smearing function at fixed time x0. Although
we naively introduced in the preliminaries the Fourier transformation of the creation and annihilation
operators, we have the following equality

φ1(x)|x0=0 = ã(x). (10)

The equivalence is easily proven by taking the non-covariant normalization and the inverse Fourier-
transformation into account. The eigenstates of the second-quantized coordinate operator are created
by the action of ã(x1), · · · , ã(xk) on the vacuum from the right. Hence, the second-quantized position
operator given in Equation (5) agrees with the definition of an operator creating the coordinate space,
that is needed for the calculation of probability amplitudes of positions of the particles.

To understand where (spatially) the particles are, the coordinate space displays more importance, than
the configuration space. Particularly, it is essential to obtain a deeper understanding of QFT’s that are
defined on non-commutative spaces.

Remark An integral transformation from the configuration space to the coordinate space exists and it
is given by,
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|x〉= φ
+(x)|0〉=

∫
dnµ(p)eipxa∗c(p)|0〉

= (2π)−n/2
∫

dny
(∫

dnµ(p)
√

2ωp ei(ωpx0+pk(x−y)k)
)

ã∗(y)|0〉,

where in the last line the Fourier-transformation was used.

IV | POINCARÉ GROUP

In this section, we take the representations of the Poincaré group in terms of QFT Fock-space operators
and perform a base change to the coordinate space.

Lemma 2. The zero component, i.e. the operator generating time-translations, has the following
representation in coordinate space,

P0 =
∫

dnx ã∗(x)(ω̃∗ ã)(x),

where ∗ denotes the convolution and the function ω̃(x) is defined as

ω̃(x) :=−2(2π)−
n+1

2 (
m
|x|

)
n+1

2 K n+1
2
(m|x|).

The momentum operator, that is responsible for spatial translations takes in coordinate space the
following form,

Pj = i
∫

dnx ã∗(x)
∂

∂x j ã(x).

Demostración. Let us first prove the base change for the spatial part of the momentum operator. The
base change is straight forward and it is done as in the proof for the coordinate operator (see Lemma 4),

Pj =
∫

dnp p j a∗(p)a(p)

= (2π)−n
∫

dnp p j

∫
dnxe−iplxl

ã∗(x)
∫

dnyeipkyk
ã(y)

= (2π)−n
∫∫

dnxdny
(∫

dnp p j e−ipk(x−y)k
)

ã∗(x)ã(y)

=−(2π)−n
∫∫

dnxdny i
∂

∂y j

(∫
dnp e−ipk(x−y)k

)
ã∗(x)ã(y)

= i
∫∫

dnxdnyδ
n(x−y)ã∗(x)

∂

∂y j ã(y)

= i
∫

dnx ã∗(x)
∂

∂x j ã(x),

where in the last lines we performed a partial integration and integrated over the delta function. Next,
we transform the zero component into the coordinate space. This transformation requires more work
and in particular we use Formula (3),
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P0 =
∫

dnpωp a∗(p)a(p)

= (2π)−n
∫

dnp
√
|p|2 +m2

∫
dnxe−iplxl

ã∗(x)
∫

dnyeipkyk
ã(y)

= (2π)−n
∫∫

dnxdny
(∫

dnp
√
|p|2 +m2 e−ipk(x−y)k

)
ã∗(x)ã(y)

=−2(2π)−
n+1

2

∫∫
dnxdny(

m
|x−y|

)
n+1

2 K n+1
2
(m|x−y|)ã∗(x)ã(y),

where the Fourier transformation in the last step can be found in (Gel’fand and Shilov, 1964, Chapter
III, Section 2.8).

An interesting object that appeared naturally in (Much, 2015) is that of the velocity operator. It can be
obtained in two different ways. The first path is guided by intuition. Since the operator must be the
second quantization of the spatial velocity for a relativistic particle we have the following expression,

Vj =
∫

dnp
p j

ωp
a∗(p)a(p)

The second more profound approach is given by the Heisenberg equation of motion,

[P0,X j] =−iVj. (11)

The results of the two paths agree and it was proven in (Much, 2015). Since we have expressions for
the momentum and coordinate operator in the spatial space, we can express the velocity operator in the
coordinate space by taking the commutator (11). Hence, the second path is from a calculative point of
view easier and the explicit result is given in the following lemma.

Lemma 3. The velocity operator expressed in terms of ladder operators of the coordinate space is
given by,

Vj =−i
∫

dnx ã∗(x)(ω̃ j ∗ ã)(x), (12)

with vector-valued function ω̃ j defined as ω̃ j(x) := 2(2π)−
n+1

2 (
m
|x|

)
n+1

2 K n+1
2
(m|x|)x j and where ∗

denotes the convolution.

Demostración. The proof is straight-forward and it is done by explicitly calculating the Heisenberg
equation of motion in coordinate space, i.e.

[P0,X j] =
∫∫

dnxdnzz j [ã∗(x)(ω̃∗ ã)(x), ã∗(z)ã(z)]

=
∫∫∫

dnxdnydnzz j ω̃(x− y) [ã∗(x)ã(y), ã∗(z)ã(z)]︸ ︷︷ ︸
−δ(x−z)ã∗(z)ã(y)+δ(y−z)ã∗(x)ã(z)

=−
∫∫

dnxdny (x− y) j ω̃(x− y)ã∗(x)ã(y).
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The velocity operator expressed in the coordinate space is useful for the boost operators. In particular,
the boosts of the restricted Lorentz group have the velocity operator explicitly in their respective
representations.

Next, we turn to the generators of the proper orthochronous Lorentz group L ↑
+, consisting of boosts

and rotations which are given in the momentum space as, (Itzykson and Zuber, 1980, Equation3.54),
(Sibold and Solard, 2009)

M j0 = i
∫

dnpa∗(p)
(

p j

2ωp
−ωp

∂

∂p j

)
a(p), (13)

Mik = i
∫

dnpa∗(p)
(

pi
∂

∂pk − pk
∂

∂pi

)
a(p). (14)

The next theorem displays the importance of the NWP-operator. In particular, the generators of boost
and rotations can be represented by second quantized (denoted by dΓ(·) see (Reed and Simon, 1975,
Chapter X.7)) products of the momentum and NWP-operator.

Theorem 4. For the massive scalar field, generators of the proper orthochronous Lorentz-group L ↑
+

can be represented in terms of products of the NWP-operator and the relativistic momentum operator
as follows,

M0 j =
1
2
(
dΓ(X jP0)+dΓ(P0X j)

)
, Mik = dΓ(XiPk)−dΓ(XkPi). (15)

Demostración. We start the proof for boosts where we have,

M0 j =
1
2
(
dΓ(X jP0)+dΓ(P0X j)

)
=

1
2

dΓ([X j,P0])+dΓ(P0X j)

=
i
2

dΓ(Vj)+dΓ(P0X j),

where in the last lines we used the Equation of motion given by Formula (11). The proof for rotations
is obvious and hence it is omitted.

The former Theorem conveys the fact that we can define the generator of the Lorentz-group by using
the coordinate operator and the momentum operator. Therefore, the canonical commutation relations
with addition of the zero component of momentum can be used to define the group of relativity. This
fact, is, in our opinion, an additional argument for the physical sense of the NWP-operator.
Moreover, the representation of Lorentz generators by using the NWP and momentum operator induces
more transparency into the non-covariant behavior of the NWP-operator with regards to boosts. The
following calculations clarify the former statement,

[M0 j,P0] =
1
2
[
(
dΓ(X jP0)+dΓ(P0X j)

)
,dΓ(P0)]

=
1
2
(
dΓ([X j,P0]P0)+dΓ(P0[X j,P0])

)
= idΓ(VjP0) = idΓ(Pj) = iPj,
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where in the last lines we used [dΓ(A),dΓ(B)] = dΓ([A,B]) and the Heisenberg-equation (see Equation
11). Moreover, we used the representation of the velocity operator as Vj = dΓ(P−1

0 Pj). Next, the
commutator of boosts with the spatial momentum is calculated,

[M0 j,Pk] =
1
2
[
(
dΓ(X jP0)+dΓ(P0X j)

)
,dΓ(Pk)]

=
1
2
(
dΓ([X j,Pk]P0)+dΓ(P0[X j,Pk])

)
=−iη jkP0,

where in the last lines we used the second-quantization of the unit operator to be the particle number
operator, i.e. dΓ(IH ) = N and the explicit canonical commutation relations, see Equation (6). Next, we
calculate the commutator which essentially answers the question of covariance w.r.t. the NWP-operator,

[M0 j,Xk] =
1
2
[
(
dΓ(X jP0)+dΓ(P0X j)

)
,dΓ(Xk)]

=
1
2
(
dΓ(X j[P0,Xk])+dΓ([P0,Xk]X j)

)
=

i
2
(
dΓ(X jVk)+dΓ(VkX j)

)
.

The former commutator has no resemblance to a covariant commutator-like object as [M0 j,Xk] =
−iη jkX0. However, the boost operator can be translated in time by using the generators of the translation
group,

eix0P0M j0e−ix0P0 = M j0 + ix0[P0,M j0]+
i2

2!
(x0)2 [P0, [P0,M j0]]︸ ︷︷ ︸

=0

+ · · ·

= M j0 + x0Pj,

with x0 ∈ R and where the Backer-Campbell-Hausdorff formula and the explicit Poincaré algebra was
used. Therefore, the time-dependent boost-operator can be represented as a symmetric product of the
second quantized coordinate, the time and the momentum operators,

M0 j =
1
2
(
dΓ(X jP0)+dΓ(P0X j)+ x0dΓ(P0)+dΓ(P0)x0

)
=

1
2
(
dΓ(X jP0)+dΓ(P0X j)

)
+ x0dΓ(P0).

By using the time-translated boost operator we obtain for the commutator with the NWP-operator ,

[M j0 + x0Pj,Xk] =
i
2
(
dΓ(X jVk)+dΓ(VkX j)

)
+ x0[Pj,Xk]

= iη jk x0N +
i
2
(
dΓ(X jVk)+dΓ(VkX j)

)
,

which has a resemblance to a covariant operator. From the view point of representing the Lorentz
generators by the use of the NWP- and the momentum operator, the non-covariance issue becomes
clear on a more profound level. Commutator relations for the rotations are obvious and hence we shall
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omit them. However, from the representation of these operators, it becomes obvious why both the NWP
and the momentum operator transform covariantly w.r.t rotations. In particular, generators of rotations
have the well-known complementarity between momentum and position.

Lemma 5. Generators of the proper orthochronous Lorentz group L ↑
+ expressed in the terms of ladder

operators of the free massive scalar field are represented in the coordinate space as,

M j0 =
1
2

∫∫
dnxdny(x+ y) j ω̃(x−y)ã∗(x)ã(y)

The operator of rotations takes the familiar form in the coordinate space,

Mik = i
∫

dnx ã∗(x)
(

xi
∂

∂xk − xk
∂

∂xi

)
ã(x).

Demostración. We start by calculating the base change of the rotation generators of the Lorentz group
L ↑

+,

Mik = i
∫

dnpa∗(p)
(

pi
∂

∂pk − pk
∂

∂pi

)
a(p)

= i(2π)−n
∫

dnp
∫

dnxe−iplxl
ã∗(x)

(
pi

∂

∂pk − pk
∂

∂pi

)∫
dnyeipryr

ã(y)

=−i(2π)−n
∫

dnp
∫

dnxe−iplxl
ã∗(x)

∫
dny

(
yi

∂

∂yk − yk
∂

∂yi

)
eipryr

ã(y)

= i(2π)−n
∫∫

dnxdny
(∫

dnpe−ipl(x−y)l
)

ã∗(x)
(

yi
∂

∂yk − yk
∂

∂yi

)
ã(y)

= i
∫

dnx ã∗(x)
(

xi
∂

∂xk − xk
∂

∂xi

)
ã(x),

where in the last lines we performed a partial integration and integrated over a delta function. Next, we

turn to the Lorentz boosts. The first term is simply the velocity operator times
i
2

. Hence, we focus here
only on the second part,

− i
∫

dnpa∗(p)ωp
∂

∂p j a(p)

=−i
∫

dnp
∫

dnxe−iprxr
ã∗(x)ωp

∂

∂p j

∫
dnyeipkyk

ã(y)

= (2π)−n
∫∫

dnxdny
(∫

dnp
√
|p|2 +m2 e−ipk(x−y)k

)
y j ã∗(x)ã(y)

=−2(2π)−
n+1

2

∫∫
dnxdnyy j (

m
|x−y|

)
n+1

2 K n+1
2
(m|x−y|)ã∗(x)ã(y)

=
∫∫

dnxdnyy j ω̃(x−y)ã∗(x)ã(y),

where in the last lines we performed the differentiation and used Integral (3).
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Now the result for the rotations is not surprising and is well-known from quantum mechanics, i.e. for
one-particle. The interesting and unknown result is that of the Lorentz-boosts. It is a representation of
the boost operator in terms of the spatial coordinate space. From the form of the boost generator it also
becomes more clear why a covariant coordinate operator, i.e. a zero component (besides issues with
Pauli’s theorem) X0 cannot exist. This can be seen by taking the commutator of the Lorentz boost and
the coordinate operator,

[M j0,Xk] =
1
2

∫∫∫
dnxdnydnz(x+ y) j zk ω̃(x−y)[ã∗(x)ã(y), ã∗(z)ã(z)]

=−1
2

∫∫
dnxdny (x+ y) j (x− y)k ω̃(x−y)ã∗(x)ã(y)

6=−iδ jkX0.

Moreover, the complementarity in an operational sense, i.e. by replacing multiplication operators with
derivatives and vice versa, is broken by the boost operators. This can be easily seen due to their explicit
form in the coordinate space.

In Section III we gave the explicit operator (see Equation (8)) to calculate the probability amplitude
for finding k-particle at positions x1 · · ·xk at time x0 = x10 = · · ·xk0. By setting the time component
x0 = 0 equal to zero we were able to match this expression with our ladder operator in coordinate space.
Hence, we could (or should) have calculated the more general and explicit expressions for the operators
by keeping the time component. To resolve this issue, time-translations can be performed by using the
unitary adjoint action of the zero component of the momentum. This fact is composed as a result in the
form of a proposition.

Proposition 6. The operator φ1 given as,

φ1(x) = (2π)−n/2
∫

dnpeip·x a(p),

can be expressed by using time-translations of the Fourier-transformed annihilation operator ã as
follows

φ1(x) = φ1(x0,x) = eix0P0 ã(x)e−ix0P0 , x0 ∈ R.

Demostración. The proof is performed by using the inverse Fourier-transformation of ã, i.e.

eix0P0 ã(x)e−ix0P0 = (2π)−n/2
∫

dnpe−ipkxk
eix0P0a(p)e−iy0P0

= (2π)−n/2
∫

dnpe−ipkxk
e−ip0x0

a(p),

where in the last lines we used the adjoint action of the translation group on the annihilation operator,
see (Schweber, 1961, Chapter 7, Equation 61). This agrees with the expression given in Equation (8).
The explicit expression of this operator in terms of the coordinate space ladder operators is given in the
next section.

Hence, instead of using the time-independent transformations using the ladder operators in coordinate
space, we could have used the product of φ1(x0,x) and φ1(x0,y) or we can simply take our obtained
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expressions and perform a time-translation. However, from the Baker-Campbell-Hausdorff formula
and the particular algebra of the Poincaré group it follows that the momentum operator and the spatial
rotations are invariant under time-translations. Hence, the only term that changes under time-translation
is the boost operator and this is easily calculated,

eix0P0M j0e−ix0P0 = M j0 + x0Pj,

using the Baker-Campbell-Hausdorff formula and the Poincaré algebra.

Although, neither the coordinate operator nor the respective eigenstates are Lorentz-covariant, the
Poincaré operators that are translated in this work obey the covariant transformation property. In
particular, the Lorentz-covariance does not depend on the specific base that is chosen. This statement
is proven by re-transforming the ladder operators from coordinate space into momentum space, and
taking the appropriate transformation into account. This is obvious and it simply follows from the
fact that that the operators are covariant, invariant of the representation they are given in. Hence, even
though we use non-covariant eigenstates, generators of the Poincaré group written in coordinate space
respect the relativistic covariance.

V | POINCARÉ TRANSFORMATIONS OF THE COORDINATE SPACE

In this section we investigate Poincaré transformations, for the massive case, of the Fourier-transformed
ladder operators. In particular, we calculate how the operator φ1, which is the object used to calculate
probability amplitudes, transforms under space-time translations and pure rotations. The motivation
herein is to give the proper transformation behavior of probability amplitudes under changes of frame.
In particular, given two frames related by space-time translations or pure rotations, both must be able to
calculate and compare the probability amplitude w.r.t. the frame change. We purposely neglect boosts
since the spatial coordinate space is not Lorentz-covariant and hence the question of how boosts act is
not well-defined from the very beginning.
In the forthcoming calculations, we work in the physical relevant dimension d = 4. Moreover, we
define the unitary operator that generates transformations of the orthochronous proper Poincaré group,
P↑

+ = L ↑
+nR4 as U(y,Λ) transforming the creation and annihilation operators as, (Schweber, 1961,

Chapter 7),

U(y,Λ)a(p)U(y,Λ)−1 =

√
ωΛp

ωp
e−i(Λp)µyµ

a(Λp), (y,Λ) ∈P↑
+, (16)

U(y,Λ)a∗(p)U(y,Λ)−1 =

√
ωΛp

ωp
ei(Λp)µyµ

a∗(Λp), (y,Λ) ∈P↑
+ (17)

To simplify calculations with regard to transformations of the operator φ1, we first give the adjoint
actions on the Fourier-transformed operators and afterwards perform a time-translation, see Proposition
6. By using the former results, we calculate transformations in the momentum space and perform an
inverse Fourier-transformation in order to get the respective coordinate space transformations.

Lemma 7. The Fourier-transformed annihilation operator ã transforms under the adjoint action of the
translation group as follows,
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U(y,I)ã(x)U(y,I)−1 =
iy0

2π2

∫
d3z

(
m2K2(m

√
|x+y− z|2− (y0)2)

|x+y− z|2− (y0)2

)
ã(z),

where y ∈ R4 and ∗ denotes the convolution.

Demostración. Since, the momentum operators commute we can first calculate the spatial transforma-
tions, which are easier, and then the time-translations, i.e.

U(y,I)ã(x)U(y,I)−1 =U(y0,I)U(y,I) ã(x)U(y,I)−1U(y0,I)−1.

Therefore, we first investigate the following expression,

U(y,I)ã(x)U(y,I)−1 = eiykPk ã(x)e−iykPk

= (2π)3/2
∫

d3pe−ipkxk
U(y,I)a(p)U(y,I)−1

= (2π)−3/2
∫

d3pe−ipk(x+y)k
a(p) = ã(x+y),

where in the last lines we used the inverse Fourier-transformation (see Equation 2) and the well-known
action of translations in the momentum space, see (Schweber, 1961, Chapter 7, Equation 61). Next, we
calculate the action of time-translations, which is given by the following expression,

U(y0,I)ã(x)U(y0,I)−1 = eiy0P0 ã(x)e−iy0P0

= (2π)−3/2
∫

d3pe−ipkxk
e−iy0ωp a(p)

= (2π)−3
∫

d3z
(∫

d3pe−ipk(x−z)k
e−iωpy0

)
ã(z)

=
iy0

2π2

∫
d3z

(
m2K2(m

√
|x− z|2− (y0)2)

|x− z|2− (y0)2

)
ã(z),

where in the former equation we used (Peskin and Schroeder, 1995, Chapter 2) and (Gradshteyn et al.,
2007, Equation 3.914) to solve the integral. Equivalent considerations can be done for the Fourier
transformed creation operator ã∗. By using both transformations the proof is completed.

The translation acting on the coordinate space in spatial direction was as expected a translation in the
spatial space as well. However, the difference in the spatial space becomes visible when we perform a
translation in time. Since, there is no time component the time-translation transforms, and therefore
acts, on the spatial space in a more complex manner. It is interesting since this is a physical important
expression. Essentially, it tells us how the spatial coordinate space (which is made of k-ladder operators,
see Equation 10), transforms under a time-translation. Moreover, with regards to the time-translated
coordinate annihilation operator ã, which corresponds to φ1, an explicit expression in coordinate space
was given. The next object of interest is the Lorentz-transformation of the Fourier-transformed ladder
operators.
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Lemma 8. Let ΛR denote the matrices of the Lorentz group which represent pure rotations. They are
given by

ΛR =

(
1 0
0 R

)
, R ∈ SO(3),

where SO(3) is the group of real, orthogonal, 3×3 matrices with determinant one. Then, the Fourier-
transformed ladder operator ã transforms under pure rotations as follows

U(0,ΛR)ã(x)U(0,ΛR)
−1 = ã(Rx).

Demostración. The action of pure spatial rotations on the the Fourier-transformed annihilation operator
is calculated by using Equation (17),

U(0,ΛR)ã(x)U(0,ΛR)
−1 = (2π)−3/2

∫
d3pe−ipkxk

U(0,ΛR)a(p)U(0,ΛR)
−1

= (2π)−3/2
∫

d3pe−ipkxk
√

ωRp

ωp
a(Rp)

= (2π)−3/2
∫

d3pe−ipk(Rx)k
a(p),

in the last lines we used the transformation behavior of the non-covariant momentum ladder operators
(see (Schweber, 1961, Chapter 7, Equation 57)) and the orthogonality of R for pure spatial rotations. The
proof for the Fourier-transformed creation operator ã∗ can be done equivalently as for the annihilation
operator. However, the transformations for ã∗ can be as well obtained by taking the adjoint of the
Fourier-transformed annihilation operator.

Next, by using the former lemmas we calculate the transformational behavior of φ1(x) under the whole
group of translations and pure rotations.

Theorem 9. The operator φ1(x) transforms in a covariant manner under space-time translations and
pure rotations, i.e.

U(y,ΛR)φ1(x)U(y,ΛR)
−1 = φ1(x0 + y0,Rx+y), (y,ΛR) ∈P↑

+.

Moreover, the explicit transformation of the Fourier-transformed operator ã under the action of the
subgroup (y,ΛR) ∈P↑

+ is in coordinate space given as,

U(y,ΛR)ã(x)U(y,ΛR)
−1 =

iy0

2π2

(
m2K2(m

√
|x+y|2− (y0)2)

|x+y|2− (y0)2

)
∗ ã(x+y).

Demostración. By using Proposition 6 we can write the operator φ1(x) in terms of the Fourier-
transformed operator, i.e.

U(y,ΛR)φ1(x)U(y,ΛR)
−1 =U(y,ΛR)U(x0,I)ã(x)U(x0,I)−1U(y,ΛR)

−1,

since time-translations commute with space-time translations and pure rotations and since we have
U(y,ΛR) =U(y,I)U(0,ΛR), they allow us to rewrite the former expression as
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U(x0,I)U(y,ΛR) ã(x)U(y,ΛR)
−1U(x0,I)−1

=U(x0,I)U(y,I)U(0,ΛR) ã(x)U(0,ΛR)
−1U(y,I)−1U(x0,I)−1

=U(x0,I)U(y,I) ã(Rx)U(y,I)−1U(x0,I)−1

=U(x0 + y0,I) ã(Rx+y)U(x0 + y0,I)−1

= φ1(x0 + y0,Rx+y),

where in the last lines we used Proposition 6 and the Lemmas 7 and 8, which give the transformational
behavior of the coordinate space operator ã.

VI | CONCLUSION AND OUTLOOK

In this paper we performed a base change of the Poincaré group for a massive scalar field, into the
coordinate space. This was done by expressing the creation and annihilation operators, via Fourier-
transformation, in terms of the coordinate basis.

One particular interesting, but expected, aspect of our results was the representation of the spatial
momentum and the Lorentzian infinitesimal generators of rotations. The one-particle spatial momentum
operator and the rotation operators had the same form as in standard quantum mechanics. This is due to
the fact that the energy condition, i.e. the choice of ωp, does not explicitly enter the expressions for
these particular observables. Nevertheless, for time-translations and boosts we notice the difference and
in particular the complementarity between the x-space and the momentum space is broken.

Concerning the specific actions of the Poincaré group on this space we obtained important results. The
action of the spatial translations and rotations on the coordinate space were as expected. However, the
interesting result occurred when the time-translation was involved. In a sense, these transformations are
a way to fully understand what happens in the spatial coordinate space, when transformations involving
time come into play. The restriction to this particular space is a by-product of the mass shell condition
that restricted a d-dimensional momentum space to a (d−1)-dimensional subspace. Hence, by using
the transformations in coordinate space one can calculate the probability of finding particles in certain
spatial-positions at time x0 after an explicit time-translation was performed.

In this work, we translated the boost operators into the coordinate space. Moreover, the adjoint action
of the Fourier-transformed operators w.r.t. the boosts was not calculated. Generally, such a calculation
is not well-posed since boosts mix time and space in a non-trivial manner. And as hence, the eigenstates
of the Newton-Wigner operator are not Lorentz-covariant the calculation of a boost on these particular
spaces is from a physical point of view considered problematic.

We performed all base changes by using the massive scalar field. However, a possible extension to this
framework can be done with regard to other fields, as for example considering the conformal group
expressed in terms of the massless scalar field. This is work in progress.
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