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La dinámica independiente de traslaciones de un sistema cuántico de
n cuerpos tiene muchas aplicaciones, e.g., en sistemas moleculares y
nucleares, donde es común clasificar los grados de libertad del sistema
en 3 rotacionales y 3n−6 coordenadas de forma. Es sabido que existe
una interacción entre los grados rotacionales y de forma. En particular,
cambios en la forma pueden llegar a inducir un cambio en la orientación
del sistema. En este trabajo, mostramos un sistema cuántico que gira pero
sin deformar su densidad de probabilidades de forma y con momento
angular cero. El cambio de la orientación es monitoreada con una función
de onda de orientaciones localizada. Caracterizamos estas funciones de
onda localizados y estudiamos su evolución bajo un Hamiltoniano tipo
rotor rígido, concluyendo que esta clase de funciones de onda pueden
rotar, independientes de su evolución de formas.

The free translational dynamics of an n-body quantum system has many
applications, e.g. in molecular and nuclei systems, where it is common to
classify the degrees of freedom of the system in 3 rotational and 3n−6
shape coordinates. It is known that there exists an interaction between
the shape and orientation degrees of freedom. In particular, changes of
the shape could induce an orientation change. In this work, it is shown
a rotating quantum system which does not deform its shape probability
density and with vanishing angular momentum. The orientation change is
monitored with a localized orientation wavefunction. We characterize the
localized wavefunctions and study their evolution under a rigid rotor-like
Hamiltonian, concluding that this kind of wavefunctions may rotate by
their own.
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A ROTATING QUANTUM SYSTEM WITHOUT ANGULAR MOMENTUM AND SHAPE DEFORMATIONS

I | INTRODUCTION

A system of n isolating point particles has 3n coordinates separated in three coordinates of the center
of mass position, three of the orientation of the system and 3n− 6 to describe the shape of the

system. The last coordinates are related to the vibrational modes in small oscillations. The orientation
and shape coordinates do not evolve independently in the most of the physical systems producing many
phenomena, e.g., the falling cat problem (Kane & Scher, 1969; Montgomery, 1993), the re-orientation
of a diver (Frolich, 1979), or the rovibrational excitations of molecules (Mitchell & Littlejohn, 1999;
Ovchinnikov, Erikhman, & Pronin, 2001).
The emergence of geometrical methods in the study of the n-body problem, pioneered by Guichardet
(Guichardet, 1984), have provided extensions of the subject, in particular in the interplay between
orientation and shape dynamics (Shapere & Wilczek, 1989; Tachibana & Iwai, 1986) The quantum
version of the problem has also been benefited by these approaches, leading to new advances in the
theory and its potential applications in molecular dynamics (Littlejohn, Mitchell, Reinsch, Aquilanti, &
Cavalli, 1998a, 1998b; Littlejohn & Reinsch, 1997; Mitchell & Littlejohn, 2000).
Nowadays scientists have found and synthesized machine-like molecules (Kottas, Clarke, Horinek, &
Michl, 2005; Ohmann, 2015; Perera, 2013), i.e., molecules managing a particular motion with operable
degrees of freedom. The molecules are described in a semi-classical way because the considered
constituent parts are too big to have a purely quantum behavior. These and incoming systems may
present orientation-shape dynamics with new phenomena given by their quantum nature. For instance,
the quantum version of the falling cat problem (Chryssomalakos, Hernández-Coronado, & Serrano-
Ensástiga, 2015) may represent the dynamics of the constituent atoms of a molecule.
The aim of the paper is the presentation of quantum systems which, counter-intuitive to our (classical)
experience, rotate with vanishing angular momentum expectation value and invariant (quantum) shape.
The examples are made with the three-body system. The outline of this paper is as follows: Sec.
II reviews the classic n-body problem, following closely (Littlejohn & Reinsch, 1997). In Sec. III
is presented the three-body model and an example of a system which rotates under a cyclic shape
deformation and with vanishing total angular momentum. Sec. IV reviews the quantum version of the
n-body problem and the approximations used in this work. The three-body quantum system and our
counter-intuitive examples are presented in Sec. V. Conclusions are summarized in Sec. VI.

II | CLASSICAL CASE

The first step is to consider a body consisting of n point-like particles with an interacting potential V
and no other external force. The Lagrangian of the system is

L =
1
2

n

∑
α=1
|ṙsα|2 +V (rsα), (1)

where rsα is the α-th particle’s position vector with respect to a fixed inertial frame called the space
frame. The absence of external forces suggests the factorization of the center of mass dynamics writing
the Lagrangian with relative vectors, e.g., the mass-weighted Jacobi vectors,

ρsα =
√

µα

N

∑
β=1

Tαβrsβ, α = 1, . . . ,n−1 (2)
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A ROTATING QUANTUM SYSTEM WITHOUT ANGULAR MOMENTUM AND SHAPE DEFORMATIONS

where µα are the reduced masses and T is a numerical matrix (see (Littlejohn & Reinsch, 1997) for
more details) such that the vectors ρsα are invariant under translations. Using the previous coordinate
transformation, the Lagrangian takes the form

L =
1
2

M|Ṙs|2 +
n

∑
α=1
|ρ̇sα|2 +V (ρsα). (3)

The configuration space of the whole system is R3n = R3×C , where C = R3n−3 is the translation-
reduced configuration space. For the rest of the paper, Rs = Ṙs = 0 and C is referred simply as the
configuration space. A point in C specifies the shape and orientation of the body. Three degrees of
freedom define the orientation system (for instance, the Euler angles) and there are 3n−6 remaining
coordinates qµ which specify the body’s shape, where qµ are independent functions on C invariant
under proper rotations,

qµ(ρs,1, . . . ,ρs,n−1) = qµ(Rρs,1, . . . ,Rρs,n−1), (4)

for all R ∈ SO(3). To define the body’s orientation operationally, on the other hand, we require (i) an
orthonormal frame called the body frame, fixed to the body for each shape and given by the relations
ρα = ρα(qµ), α = 1, . . . ,n− 1, (the quantities referred to the body frame are written without the
subindex s), and (ii) the rotation R ∈ SO(3) that maps the body frame to the space frame parametrized,
for instance, by Euler angles R= R(θi). Fixing a body frame for each shape is a choice of gauge, that
defines as reference orientation the one where the body and space frames coincide. The factorization
of (non-collinear) configurations in “shape times orientation" leads to a description of C as a SO(3)
principal fiber bundle (Littlejohn & Reinsch, 1997; Nakahara, 1990) and its mathematical construction
is as follows. We let p ∈ C be some specific configuration, and we consider the set of configurations
given by the orbit of p under the action of SO(3) Op = Rp|R ∈ SO(3). The configurations of Op have
the same shape as p, and they form a surface in C . The non-collinear configurations of the system
have an orbit of dimension 3, each of which is a copy of SO(3). The orbit of collinear configurations
are a copy of the two-sphere S2 , and when all the particles coincide in a single point p (an n-body
collision), the orbit is just the point p itself; in this case the orbit is zero-dimensional. For systems
with number of particles n ≥ 3, the configurations without orbits diffeomorphic to SO(3) is a set of
measure zero. The shape space of C is the quotient space S = C/SO(3), the space in which a single
point represents a whole orbit, i.e., the equivalence class of configurations of the same shape. If we
exclude the configurations without orbit diffeomorphic to SO(3), then the remaining configuration
space qualifies properly speaking as a principal fiber bundle, in which the shape space is the base space,
the structure group is SO(3), and the fibers are the orbits. The whole configuration space C will be
considered as a principal fiber bundle, just taking into account that there are points in the base space
where the fiber shrinks and silly situations may occur. The total space C has a surjective projection map
π : C → S mapping each point p of C to its equivalence class in S . In the fiber-bundle picture, a choice
of gauge is a locally smooth specification of a unique point in each fiber, i.e., the graph of a continuous
map σ : S→ C such that π(σ(x)) = x for all x ∈ S . The graph of σ, called a section, is a surface which
cuts through the fibers, specifying the reference orientation for each shape configuration, i.e., the body
frame. This fiber bundle is in general non-trivial, so that a section cannot be chosen globally, i.e., there
is no smooth global assignment of a body frame covering the whole base space.
In terms of these orientation and shape coordinates, (θi,qµ), and a section ρα(qµ) as above, a point
(ρs,1, . . . ,ρs,n−1) in C is defined by
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ρs,α = R(θi)ρα(qµ), α = 1, . . . ,n−1. (5)

The above relation expresses the fact that given a shape of the body qµ , and a reference orientation
ρα(qµ), any configuration of the body, with that shape, can be reached through a unique rotation R(θi).
For the tangent space T C , it will prove convenient to use an anholonomic basis, such that the velocity
vector v of the system has components va = (ω, q̇µ), where

ω
i =−1

2
ε

i jk(RT · Ṙ) jk, (6)

is the i-th component of the angular velocity of the body frame w.r.t. the space frame, referred to the
body frame (as indicated by the absence of subscript s) — the corresponding basis vectors satisfy
the SO(3) Lie algebra. In the above expression, and in what follows, repeated indices are implicitly
summed over and the Greek indices µ, ν represent shape coordinates.
The Lagrangian (3) can be written in the form

L =
1
2

Gabν
a
ν

b−V (q), (Gab)≡
(

M MAν

AT
νM gµν +Aµ ·M ·Aν

)
, (7)

where (Gab) is the metric in configuration space C , defined by the kinetic energy, M is the inertia
tensor, and

Aµ = M−1
n−1

∑
α=1

ρα×
∂ρα

∂qµ ,

gµν =
n−1

∑
α=1

∂ρα

∂qµ ·
∂ρα

∂qν
−Aµ ·M ·Aν, (8)

are the Coriolis gauge potential and the metric on shape space S , respectively.
A velocity vector of the form va = (ω,0) is purely rotational, or vertical, since q̇µ = 0 implies the
body’s shape is not changing. A complementary notion of horizontality is furnished by decreeing a
velocity vector horizontal if the corresponding motion of the system has zero total angular momentum.
It turns out that horizontal and vertical vectors are orthogonal according to the above metric G. In the
anholonomic basis introduced earlier, the angular momentum referred to the body frame is given by

L =M · (ω+Aµq̇µ). (9)

The total angular momentum in the space frame Ls is constant, which referred in the body frame is
given by

R−1Ls = L =M · (ω+Aµq̇µ), (10)

The change of the frame R with respect to t is calculated with the previous equation,

n̂ dη = ω dt =M−1L dt−Aµdqµ, (11)

where n̂ dη is an infinitesimal rotation of angle dη around the axes n̂. When Ls = 0, eq. (11) only
depends of the curve in the shape space,
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R(t) = P exp

(
−

∫ q(t)

q0

Aµdqµ

)
, (12)

where the body and space frame coincides at t = 0, P exp is a path integral (the composition of rotations
is non-Abelian), and Aµ is the antisymmetric matrix associated to the gauge potential, (Aµ)i j =−εi jkAk

µ.
The rotation is independent of the gauge (and then it is a physical quantity) only for closed curves in
the shape space. The equation (11) with L = 0 is a connection in the principal fiber bundle, which
defines a horizontal vector in each point of C , such that for each curve in the base (shape) space q(t),
the connection gives the horizontal lift in C given by eq. (12). For L 6= 0, the infinitesimal rotation (11)
acquires an additional time-dependent contribution (M−1L)dt.

Just as in Yang-Mills gauge field theory, we define an associated curvature 2-form B, called in this case
the Coriolis tensor, with components given by

Bµν = ∂µAν−∂νAµ−Aµ×Aν, (13)

such that a cyclic deformation in shape space, with L = 0, around the infinitesimal parallelogram
spanned by the vectors yµ and zµ , produces the gauge-covariant infinitesimal rotation generated by
ωdt =−Bµνyµzν . Note that R 6= 1 requires both B 6= 0 and a non-zero enclosed area by the closed path
qµ(t) in shape space.

The dynamics of the system can also be described by means of the gauge-covariant Hamiltonian

H =
1
2

L ·M−1 ·L+
1
2
(pµ−Aµ ·L)gµν(pν−Aν ·L)+V (q), (14)

where pµ = gµνq̇ν +Aµ ·L is the momentum conjugate to the shape coordinate qµ . The equation (10)
is recovered using the Hamilton equations for a non-holonomic frame in eq. (14) (Littlejohn & Reinsch,
1997).

III | THREE- BODY SYSTEM

Let us consider three particles with masses {mi}3
i=3 and position vectors {rsi}3

i=1, respectively. We use
the Jacobi vectors

ρs1 =
√

µ1(rs2− rs1), ρs2 =
√

µ2(rs3−Rs,12), (15)

with

µ1 =
m1m2

m1 +m2
, µ2 =

m3(m1 +m2)

m1 +m2 +m3
, Rs,12 =

m1rs1 +m2rs2

m1 +m2
(16)

where µ j are the reduced masses of each particles’ cluster and Rs,12 is the center of mass of the particles
1 and 2. The following shape coordinates will allow us to write the Hamiltonian in a compact form,

q1 = ρ
2
s1−ρ

2
s2, q2 = 2ρs1·ρs2, q3 = 2|ρs1×ρs2| ≥ 0 (17)

Fig. 1 shows the shape space, with the associated triangle shape for some particular points.
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Figure 1: Shape space of the three-body system with equal masses. The gray triangles are the shapes of
the system in the red points (q1,q2,q3) =(0, 0, 1), (0, 0, 2), (1, 0, 1), (0, 1, 1), ( 1, 1, 1), respectively.
The blue points and dashed lines remark the position of the red points.

We define for practical issues the variable, q = ρ
2
s1 +ρ

2
s2 = (q2

1 +q2
2 +q2

3)
1/3. To the gauge, we use the

so-called north regular gauge (Littlejohn & Reinsch, 1997).

ρ1 =
1

2
√

q+q3
(q+q3 +q1,q2,0), ρ2 =

1
2
√

q+q3
(q2,q+q3−q1,0) (18)

This gauge has not a Dirac-like singularity (called in molecular physics an Iwai monopole (Iwai, 1987),
a characteristic that other gauges have (Iwai, 1987; Tennyson & Sutcliffe, 1982). Now, we can calculate
the quantities appeared in the Hamiltonian,

gµν = 4q(dq2
1 +dq2

2 +dq2
3), Aµdqµ =

q1dq2−q2dq1

2q(q+q3)
ẑ. (19)

M =


q−q1

2
−q2

2
0

−q2

2
q+q1

2
0

0 0 q

 , M−1 =


2(q+q1)

q2
3

2q2

q2
3

0

2q2

q2
3

2(q−q1)

q2
3

0

0 0 q−1

 . (20)

REF-UNAH / Vol. 6 - No. 1 / 14 - 23



A ROTATING QUANTUM SYSTEM WITHOUT ANGULAR MOMENTUM AND SHAPE DEFORMATIONS

Accordingly, the Hamiltonian (14) takes the form

H =

(
q+q1

q2
2

)
L2

x +

(
q−q1

q2
3

)
L2

y +

(
1

q+q3

)
L2

z +

(
2q2

q2
3

)
LxLy

− 2Lz

q+q3
(−q2 p1 +q1 p2)+2q(p2

1 + p2
2 + p2

3)+V (q). (21)

1 | Rigid rotor case

In this case, the shape momentum pµ is not proportional to qu. For the rigid rotor case, pmu = Aµ ·L
and its Hamiltonian is

H =
1
2

L ·M−1 =
(q+q1)

q2
3

L2
x +

(q−q1)

q2
3

L2
y +

2q2

q2
3

LxLy +
1

2q
L2

z (22)

The north regular gauge is not oriented to the principal axes in general, only when q2 = 0. To get
an intuition of the shape coordinates, we consider a three-body system with an isosceles triangle
configuration and two particles of equal masses (see Fig. 2). The position vectors of the particles are

rs1 =

(
−a
2

,−
√

4b2−a2m
4M+2m

,0

)
,rs2 =

(
a
2
,−
√

4b2−a2m
4M+2m

,0

)
,rs3 =

(
0,

√
4b2−a2m
4M+2m

,0

)
(23)

Figure 2: Three-body system with isosceles triangle configuration. The blue and red particles have
masses M and m, respectively. The purple arrows are proportional to the weighted Jacobi vectors.

The shape coordinate q 2 = 0 and the inertia tensor is diagonal for this configuration class. Then, the
coordinate system is in the principal axes of the system and the inertia moments are
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Ix =
mM(4b2−a2)

2(2M+m)
=

q2
3

2(q+q1)
, Iy =

Ma2

2
=

q2
3

2(q−q1)
, Iz =

M(2mb2 +Ma2

2M+m
= q (24)

The equilateral triangle configurations are in the q3 axis, which are the unique configurations with
a doubly degenerated inertia moment. The value of q3 is proportional to the area. The collinear
configurations are in the q1−q2 plane.

2 | Vanishing total angular momentum

Figure 3: Sequence of the orientation change produced by a cyclic deformation in shape space for
the three-body problem. The top and middle rows are the snapshots of the deformation in the body
(blue) and space (green) frames at times t = 0,2π/5, . . . ,2π. The circle and cycloid-like lines in the
snapshots are the trajectories of the particles in the body and space frame, respectively. Each particle
rotates counterclockwise around a certain point, and to preserve the vanishing total angular momentum,
the whole system must rotate clockwise, as it is observed in the space frame. The bottom row is the
rotation in SO(3) in the axis-angle representation. The red dot is the rotation between the body and
space frame.

As we mentioned before, the equation (11) gives, in general, a non-trivial connection when L = 0,
and therefore the system may obtain an orientation change induced by shape deformations. In the
three-body problem, the connection may produce anholonomy by its non zero Coriolis tensor,

Bµν =
1

2q2
3

εµναqαẑ (25)
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For instance, the path trajectory in the shape space

q1 =
1
2

sin(ωt), q2 =
1
2

cos(ωt), q3 = 1, (26)

induces a re-orientation of the system monitored in Fig. 3. In the last row, we plot the orientation (red
dot) of the system with respect to the space frame in the axis-angle representation of SO(3). In Ref.
(Chryssomalakos et al., 2015), the authors use coherent states in the shape space to reproduce this
evolution in the quantum version of the system.

IV | QUANTUM CASE

In the quantum regime, the system lacks a well-defined shape and orientation. Now, the system is in a
superposition of states, each corresponding to a definite shape and orientation. The general quantum
state will be described by a wavefunction Ψ(R,qµ) con C which codifies the probability to find the
state in the configuration (R,qµ) for each point of C . The values of the shape and angular momentum
are now expectation values, 〈Ψ|qµ|Ψ〉 and 〈Ψ|Ls|Ψ〉. Additional to this, the condition 〈Ls〉= 0 does
not imply that 〈L〉 vanishes because the rotation between the body and space frame R(qµ) is a shape
dependent operator. The quantized Hamiltonian has the same expression as (14) with the same ordering
and an additional potential V2(q) (Littlejohn & Reinsch, 1997) given by

V2(q) =
~2

2
D−1/4 ∂

∂qµ

(
gµν ∂D1/4

∂qν

)
, (27)

with D = (det M)(det gµv). H commutes with L2 and Lsz in the three-body case, so its eigenfunctions
Ψ(R,q) are labeled by the quantum numbers E, l,m, respectively, which we denote by ΨElk(R,q). The
wavefunction over a section Σ of the configuration space has the form

χ
El
k (q) =

1√
2l +1

ΨElk(1,q), (28)

where k is the quantum number of the angular momentum in the body frame Lz and 1 is the identity
element of SO(3). By angular momentum theory, the complete wavefunction can be expressed with
χ

El
k (q),

ΨElm(R,q) =
l

∑
k=−l

χ
El
k (q)Dl

mk(R)∗, (29)

where Dl
mk(R) are the Wigner D functions corresponding to the irreducible (2l +1) · (2l +1) matricial

representation (irrep) of SO(3). The functions Aµ, M, gµv and V , are now complicated shape operators.
To handle them, we will consider some approximations.

1 | Approximations

For the aim of the paper, it is not necessary to solve the Hamiltonian in the general case. We assume
that: (i) the wavefunction is factorizable Ψ(R,q) = Φ(R)ψ(q), and (ii) the time evolution is a Born-
Oppenheimer like approximation, where the evolution of the shape wavefunction is not affected by
the orientation wavefunction. The first assumption will give us a clear division between the shape
and orientation wavefunctions for initial values of time. The evolution of the system will vanish the
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factorization of the wavefunction gradually. The second assumption is justified by the fact that the
vibrational states require more energy to get excited than the rotational ones in molecular systems.
The last assumption appears in many studies without mention, for instance, in the calculation of the
so-called rotational constants (Yamanouchi, 2012) which are related to the inertia moments of a system
with an implicit supposed fixed shape. Applying these approximations, the Hamiltonian of the shape
wavefunction ψ(q) is

Hs = pµgµν pν +V (q)+V2(q). (30)

The last Hamiltonian is still a formidable problem to solve in most of the cases, which it is not our
purpose. Then, instead of that, we will choose a specific ψ(q, t) y physical considerations. The
Hamiltonian of the orientation wavefunction is

2HO = L ·M−1 ·L+gµν(Aµ ·L)(Aν ·L)− pµgµν(Aν ·L)− (Aµ ·L)gµν pν, (31)

where the shape operators are now expectation values of y(q; t). For instance, the factors in the second
term of the r.h.s.of equation (31) are now the time functions 〈ψ(q, t)|guvAµiAv j|ψ(q, t)〉.

2 | Orientation wavefunction

We want an appropriate orientation wavefunction with 〈L〉= 〈Ls〉= 0, and with a localized orientation
to follow its changes. Considering that the body and space frames coincide in the localized orientation,
the maximum of the orientation wavefunction will be in the origin of the angle-axis representation of
SO(3). The orientation wavefunction must not depend on the rotation axis (θ,φ) to avoid a preference
direction. We call the former kind of orientation wavefunctions isotropic we call the former kind of
orientation wavefunctions isotropic. In the literature, they are called class functions.

0 π

2
π 3π

2
2π

5

10

l=2

l=1

l=0

Figure 4: |χl(η)|2 for l = 0,1,2.

For a spin representation l, a general wavefunction on SO(3) Φ(η;θ,φ) is given by

Φ(η;θ,φ) = ∑
mk

cmkDl
mk(η;θ,φ). (32)

Φ(R) will not depend of the rotation axis if it is invariant under rotations,

Φ(R) = Φ(URU−1), ∀U ∈ SO(3). (33)
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Well-known functions with this property are the characters χ
l(R) of the irrep of the SO(3) group

(Varshalovich, Moskalev, & Khersonskii, 1988),

χ
l(η) = χ

l(R) =
m

∑
m=−l

Dl
mm(R). (34)

In fact, they are the only functions independent of the rotation axis. To prove the last statement, we
expand (omitting the upper index l ) eq. (33)

∑
m,k

cmkDmk(R) = ∑
m,k,m′,m′′

cmkDmm0(U)Dk0k(U
−1), (35)

and express an equation between the cmk coefficients,

cm0k0 = ∑
m,k

cmkDmm0(U)Dk0k(U
−1), (36)

The only way to satisfy the last equation is with the condition cmk = δmkc and the relation

∑
m′′

Dmm′′(U)Dm′′m′(U
−1) = δmm′ . (37)

An expression of the characters χ
l(η) is the following (Varshalovich et al., 1988)

χ
l(η) =

sin [2l +1] η

2

sin η

2
. (38)

The last expression tells us that the maximum of χ
l(η) are in η = 0 and therefore, the isotropic

wavefunctions are the linear combination of χ
l(η). The Fig. 4 shows the probability density of |χl(η)|2

for l = 0,1,2. The state is more localized when you increase the value of l. A rotation η > π along the
vector n̂ is equivalent to a rotation of η−π in the antipodal direction.

V | THREE- BODY QUANTUM SYSTEM

Figure 5: ρ
s of the shape wavefunction (42).

REF-UNAH / Vol. 6 - No. 1 / 19 - 23



A ROTATING QUANTUM SYSTEM WITHOUT ANGULAR MOMENTUM AND SHAPE DEFORMATIONS

Figure 6: Evolution of the orientation change of the quantum system (46). We consider only the
evolution given by the interaction Hamiltonian HI . The snapshots contain plots of the reduced
probability density ρ

O
t (R), restricted to the xz-plane of SO(3) in the angle-axis representation for

t = πn/4, n = 0,1, . . . ,4 (elsewhere in SO(3), ρ
O
t (R) is obtained by rotation around the ẑ axis). The

red curve is the silhouette of ρ
O
t (R) in the ẑ axis of SO(3). The evolution is given by a consecutive

rigid rotation, ending with a rotation by π around the ẑ.

We use the three-body system presented in section III, with the shape coordinates (17) and the
northregular gauge (18). The equations (20) are substituted in (31), and the Hamiltonian takes the form

2HO =

(
q+q1

q2
3

)
L2

x +

(
q−q1

q2
3

)
L2

y +

(
1

q+q3

)
L2

z +

(
q2

q2
3

)
(LxLy +LyLx)+

2Lz

q+q3
(q2 p1−q1 p2).

(39)
To make the results as analytic as possible we consider 〈q3〉 constant over time and such that |〈q3〉| �
|〈q1(t)〉|, |〈q2(t)〉|. With this approximation, 〈q〉 ≈ 〈q3〉 ≡ a. The last approximation assumes that
the mean distance of the particles with respect to the center of mass is bigger than the periodical
displacements produced by q1 y q2. Now, for a fixed value of l, the orientational Hamiltonian has a
constant term which can be omitted H

′
O = 2a2HO−

a
2

l(l +1) and is divided in two parts

H
′
O = HL +HI

HL =
(a

2
+q1

)
L2

x +
(a

2
−q1

)
L2

y +q2(LxLy +LyLx)

HI = aLz(q2 p1−q1 p2) (40)

1 | Rotations induced by a static shape

We consider m = a = ~= 1. To be able to monitor visually the system’s evolution, we start from the
probability density ρt(R,q) = |Φ(R,q)|2 and compute reduced densities

ρ
s
t (q) =

∫
ρtdR, ρ

O
I (R) =

∫
ρt
√

gd3n−6q, (41)

in shape space and SO(3), respectively. We consider the shape wavefunction given by the eigen-

states of the harmonic oscillator in the normal modes q1,q2, |n1,n2〉, |ψ〉=
1√
2
(|1,0〉+ i|0,1〉), with

wavefunction

ψ(q) =
1

2π
e
−
(q2

1 +q2
1)

2 [H1(q1)H0(q2)+ iH0(q1)H1(q2)] =
1√
π

e
−
(q2

1 +q2
1)

2 (q1 + iq2) (42)
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where Hn(x) are the Hermite polynomials and ω = 1. The plot of ρ
S
t (q) is in Fig. 5.ρS

t (q) doesn’t
change on time and their most probable shape configurations are on a circle in the q1−q2 plane around
the configuration (q1,q2,q3) = (0,0,a). Even when the quantum shape of the system doesn’t change,
H1 is not zero,

〈q1〉= 〈q2〉= 0 , 〈q1 p2−q2 p1〉= 1 (43)

To deduce the origin of the non zero expectation value, we decompose ψ(q) =
√

ρ(q)eiS(q) and calculate
the real part of the expression

Re(ψ∗(q1 p2−q2 p1)ψ) = ρ(q1∂q2S−q2∂q1S) (44)

The imaginary part does not contribute to the expectation value. The wavefunction (42) has

√
ρ =

√
q2

1 +q2
2

π
exp
(
−q2

1 +q2
1

2

)
, cos S =

q1√
q2

1 +q2
2

(45)

The operator (44) measures the rotational of the function S, which in this case it does have. In this way,
the interaction Hamiltonian H1, which relates the dynamics between the shape and orientation degrees
of freedom gives a rotation to the system, even when the shape reduced density ρ

S
t (q) does not change

on time. The system has a probability current surrounding the ẑ axis. This flux adjudge an angular
momentum which is invisible in ρ

S
t (q), and by H1 imposes a rotation in the system U1(t) = eitLz . We

show in Fig. (6) the evolution of ρ
O
t (R) induced by the interaction Hamiltonian H1 of the state

Ψ(R,q) = χ
l(R)ψ(q), (46)

with l = 1 and shape wavefunction (42). The quantum body rotates rigidly around the ẑ-axis produced
by its static quantum shape.

2 | Rotation induced by HL

Figure 7: Sequence of the ρ
O
t (R) = |χ1(R)|2 evolution produced by HL with shape wavefunction (42)

for t = 2πn/4, n = 0,1, . . . ,4. ρ
O
t (R) at times t = 0,2π differs by a displacement of π along the ẑ axis,

which means that the system gets a rotation by π around the ẑ-axis.

Now, we study the rotational effects produced by the Hamiltonian term HL in the isotropic wavefunc-
tions. We assume HL given by the shape wavefunction (42),

HL =
1
2
(L2

x +L2
y) =

1
2
(L2−L2

z ) (47)
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HL is equivalent (plus a factor) of the rigid rotor Hamiltonian of a three-body system in an equilateral
triangle configuration with equal masses. In the classical case, a system with vanishing angular
momentum does not obtain an evolution by this term. However, in the quantum case is different, χ

l(R)
obtains a non-trivial evolution. We plot in Fig. (7) the UL = e−iHLt evolution of ρ

O
t (R) = |χl(R)|2 with

l = 1, at times t = 2πn/4, n = 0,1, ...,4. The central peak of the orientation wavefunction shrinks and
the small peak in π increases over time. At t = 2π, the system recovers its localized aspect seen at t = 0
displaced by π along the ẑ axis. It means that HL by itself may produced net rotations independent of
the induced rotation by the shape wavefunction and which is not produced, at least explicitly, with
some sort of angular momentum. A similar evolution is observed for any isotropic wavefunction. To
prove this statement, we compare two evolutions of χ

l(η) produced by UL(t = 2π) = e−iπ(L2−L2
z ) and

U1(t = π) = eiπLz , respectively,

UL(t = 2π)χl(η) = Ne−iπl(l+1)
(

∑
m

eiπm2
Dmm

)
= N

(
∑
m
(−1)−mDmm

)
= UL(t = π)χl(η), (48)

where UL(t = π) is a rigid rotation around the ẑ-axis. As we observe, this result is independent of l and
then, any linear combination of χ

l(η) (isotropic wavefunction) will have the same behavior.

VI | CONCLUSIONS

We show a rotating quantum system (46) with 〈L〉= 〈Ls〉= 0 and rigid quantum shape, observed in
the reduced probability density ρ

S
t (q) (Fig.5). The induced rotation comes from the probability current,

which could exist even without a real changing of the shape system. It could be thought as a car tire
who rotates unde its axis of symmetry. The rubber density is constant over the time but it still has a
non zero angular momentum. In an analogous case than the classic problem, the shape wavefunction
has an internal angular momentum (43) which induces a rotation to the whole system to keep the total
angular momentum zero. This example shows a system which it doesn’t change its internal (shape)
configuration and then its internal physical properties. For instance, if we consider this system as a
model of a molecular or nuclear system, or a nano-system, the magnitude of the expectation values
of the electric and magnetic multipolar moments doesn’t change on time, and even without angular
momentum, the direction of these physical quantities of the system could stay rotating. The same
phenomenon is produced in n-body systems with n > 3, with aditional touches emerging since the four
body system because now the system can be non-planar.
Another result presented in the paper is the characterization of the isotropic orientation wavefunctions,
defined as the wavefunctions in SO(3) which doesn’t depend on the rotation axis. The constituents of
the isotropic wavefunctions are the characters χ

l(R) of the irrep of SO(3) which are states localized in
the origin and represent systems with a localized orientation and 〈L〉= 〈Ls〉= 0. Any wavefunction
Φ(R) with a localized orientation can be written as a linear combination of the characters χ

l(R), rotated
by some R′. We observe that the evolution of the isotropic wavefunctions induced by a rigid rotor-like
Hamiltonian, for instance, HL in eq. (V), could induce a rotation by π around some axis. In our
three-body system with an equilateral triangle shape, it means that the equilateral triangle, initially in a
particular orientation, after some time, it will be re-oriented by a rotation of π around the ẑ-axis. This
result persists for any system with localized orientation wavefunction and shape with two-degenerated
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principal moments of inertia. In future work, the evolution of isotropic wavefunctions for more general
Hamiltonians will be studied with more detail.
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