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Consideramos deformaciones isoespectrales de teorías cuánticas de campo
usando como nueva herramienta de construcción a las convoluciones de-
formadas. La deformación nos permite obtener una variedad de modelos
que son local en cuña y tienen matrices de dispersión no triviles.

We consider isospectral deformations of quantum field theories by using
the novel construction tool of warped convolutions. The deformation
enables us to obtain a variety of models that are wedge-local and have
nontrivial scattering matrices.
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I | INTRODUCTION

THE equivalence of scalar fields living on a constant Moyal-Weyl space-time and wedge-local fields
was proven in the ground breaking paper (Grosse & Lechner, 2007). This important insight has since

its publication generated a vivid interest in algebraic and constructive QFT (Alazzawi, n.d.; Bostelmann
& Cadamuro, 2013; Buchholz, Lechner, & Summers, 2011; Buchholz & Summers, n.d.; Grosse & Lech-
ner, 2008; Lechner, 2012; Lechner, Schlemmer, & Tanimoto, 2013; Morfa-Morales, 2011; Much, 2012).

Wedge-local fields possess a weaker form of locality than point-like local fields. The localization is
given on the wedges (see Section 2 for the exact definition). It is the approporiate generalization for
noncommutative spacetimes since in those spacetimes the notion of a spacetime point is missing.

In this context an important tool has been formulated (Buchholz et al., 2011; Buchholz & Summers,
n.d.), known as warped convolutions, in order to deform quantum fields in a rigorous mathematical
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fashion. This precise mathematical formulation of deformation theory was used to construct new QFT-
models from a free theory at hand, (Alazzawi, n.d.; Bostelmann & Cadamuro, 2013; Lechner, 2012;
Lechner et al., 2013; Morfa-Morales, 2011; Much, 2012). In particular the investigation shows that the
newly obtained models have non-trivial scattering matrices, which even satisfy weakened relativistic
locality and covariance properties. The weakened properties are interesting from a physical point of
view since relativistic symmetries are hard to realize when the notion of a point (non-commutative
geometry) is lost. The technique of warped convolutions has been as well used in a quantum mechanical
context in order to obtain quantum mechanical effects and attack the quantum measurement problem,
(Andersson, November 2013; Much, 2014).

To obtain scalar fields living on a constant Moyal-Weyl space-time by using warped convolutions, one
uses as generator of deformation the momentum operator. Hence, fields deformed with the momentum
operator correspond to wedge local fields which are equivalent to fields living on a constant Moyal-
Weyl space-time. The question which is the subject of investigation in this paper is the following:
Are there more wedge-local fields corresponding to excitations on non-commutative space-times that
differ from the constant Moyal-Weyl space-time? An answer to this problem was given on the basis
of a concrete example (Much, 2012), where the special conformal operators were used instead of
the momentum operators for deformation. The proofs in the case of the conformal transformations
used the unitary equivalence to the momentum operator. Is this program extendable? Hence, can we
take operators that are unitary equivalent to the momentum operator and obtain wedge-local fields on
one hand and excitations living on a nontrivial non-commutative space-time on the other hand? A
detailed answer will be given in this paper. We first define the operators on the appropriate domains
and investigate how far the program of wedge-locality can be achieved.

The investigation shows that the Wightman properties of scalar fields deformed with the unitary
equivalent operator are satisfied without any restriction. However, concerning the wedge-locality we
obtain an additional requirement on the operators used for deformation. Moreover, to use the concept
of tempered polarization free generators (Borchers, Buchholz, & Schroer, 2001; Schroer, 1997) for
scattering, we are obliged to show temperateness and polynomial boundedness of the field. The award
of this concept is the ability to calculate an explicit two-particle scattering of the deformed theory.
Next to investigating locality, covariance and scattering we study the relation of deformed fields to
a non-commutative space-time. The first step in this direction is to construct an isomorphism from
the deformed ∗−algebras to the unitary transformed ∗−algebras of fields living on Moyal-Weyl. By
using simple examples it is further shown how the deformed ∗−algebras relate to the twist-deformation
framework, i.e. to fields defined on a non-commutative space-time.

The paper is organized as follows: First we lay out the novel tool of warped convolutions with
all the definitions, lemmas and propositions needed for this work. In the third Section we define the
operators used for deformation and prove that warped convolutions of the free scalar field, given as an
oscillatory integral, are well-defined. Furthermore, the Wightman properties and wedge-locality are
proven for a specific set of operators. The section ends with a whole class of examples. The fourth
section describes the scattering of the constructed models. Last but not least we turn to the heart piece
of this paper: The investigation of the resulting non-commutative space-times generated by isospectral
deformations.
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II | WARPED CONVOLUTIONS IN QFT

In this section we write all basic definitions and lemmas of the deformation known under the name of
warped convolutions. For proofs of the respective lemmas we refer the reader to the original works
(Buchholz et al., 2011; Grosse & Lechner, 2007).

The authors start their investigation with a C∗-dynamical system (A ,Rd), Pedersen (1979). It consists
of a C∗-algebra A equipped with a strongly continuous automorphic action of the group Rd which
will be denoted by α. Furthermore, let B(H) be the Hilbert space of bounded operators on H and let
the adjoint action α be implemented by the weakly continuous unitary representation U . Then, it is
argued that since the unitary representation U can be extended to the algebra B(H), there is no lost of
generality when one proceeds to the C∗-dynamical system (C∗ ⊂ B(H),Rd). Here C∗ ⊂ B(H) is the
C∗-algebra of all operators on which α acts strongly continuously.

Hence, we start by assuming the existence of a strongly continuous unitary group U that is a repre-
sentation of the additive group Rd , d ≥ 2, on some separable Hilbert space H. Moreover, to define
the deformation of operators belonging to a C∗-algebra C∗ ⊂ B(H), we consider elements belonging
to the sub-algebra C∞ ⊂C∗. The sub-algebra C∞ is defined to be the ∗−algebra of smooth elements
(in the norm topology) with respect to α, which is the adjoint action of a weakly continuous unitary
representation U of Rd given by

αx(A) =U(x)AU(x)−1, x ∈ Rd .

Let D be the dense domain of vectors in H which transform smoothly under the adjoint action of U .
Then, the warped convolutions for operators A ∈C∞ are given by the following definition.

Definition Let θ be a real skew-symmetric matrix relative to the chosen bilinear form on Rd , let
A ∈C∞ and let E be the spectral resolution of the unitary operator U . Then, the corresponding warped
convolution Aθ of A is defined on the domain D according to

Aθ :=
∫

αθx(A)dE(x), (1)

where α denotes the adjoint action of U given by αk(A) =U(k)AU(k)−1.

The restriction in the choice of operators is owed to the fact that the deformation is performed with
operator valued integrals. Furthermore, one can represent the warped convolution of A ∈ C∞ by∫

αθx(A)dE(x) or
∫

dE(x)αθx(A), on the dense domain D ⊂ H of vectors smooth w.r.t. the action of

U , in terms of strong limits∫
αθx(A)dE(x)Φ = (2π)−d lim

ε→0

∫∫
dxdyχ(εx,εy)e−ixy

αθx(A)U(y)Φ,

where χ ∈ S(Rd×Rd) with χ(0,0) = 1. This representation makes calculations and proofs concerning
the existence of integrals easier. In this work we use both representations.

The following lemma shows first that the two different warped convolutions are equivalent. Sec-
ond, it shows how the complex conjugation acts on the warped convoluted operator.
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Lemma 1. Let θ be a real skew symmetric matrix on Rd and let A ∈C∞. Then

(I)
∫

αθx(A)dE(x) =
∫

dE(x)αθx(A) (II)
(∫

αθx(A)dE(x)
)∗
⊂

∫
αθx(A∗)dE(x)

Moreover, let us introduce the deformed product, also known as the Rieffel product Rieffel (1993) by
using warped convolutions. The two deformations are interrelated since warped convolutions supply
isometric representations of Rieffel’s strict deformations of C∗-dynamical systems with actions of Rd .

Lemma 2. Let θ be a real skew-symmetric matrix on Rd and let A,B ∈C∞. Then

AθBθΦ = (A×θ B)θΦ, Φ ∈D.

where ×θ is known as the Rieffel product on C∞ and is given by,

(A×θ B)Φ = (2π)−d lim
ε→0

∫∫
dxdyχ(εx,εy)e−ixy

αθx(A)αy(B)Φ. (2)

The next proposition gives the transformation property of the warped convolution of an operator under
the adjoint action of a unitary or anti-unitary operator on H. This is relevant since in Section 2 we
examine the transformation properties of deformed operators under Poincaré transformations.

Proposition 3. Let W be a unitary or anti-unitary operator on H such that WU(x)W−1 = U(Mx),
x ∈ Rd , for some invertible matrix M. Then, for A ∈C∞,

WAθW−1 = (WAW−1)σMθMT ,

where MT is the transpose of M w.r.t the chosen bilinear form, σ = 1 if W is unitary and σ =−1 if W
is anti-unitary.

By using the former proposition and the homomorphism given in Grosse and Lechner (2007) we relate
skew symmetric matrices θ to wedges W . This in particular means that to each deformed operator with
deformation matrix θ there is a corresponding wedge W .

Most crucial to proving that the deformed fields satisfy a weakened locality known as wedge lo-
cality is the following proposition.

Proposition 4. Let A,B ∈C∞ be operators such that [αθx(A),α−θy(B)] = 0 for all x,y ∈ spU. Then

[Aθ,B−θ] = 0.

In the next section we adopt Formula (1) to define warped convolutions with an unbounded operator X
that is unitary equivalent to the momentum operator. Since we deform unbounded operators we are
obliged to prove that the deformation formula, given as an oscillatory integral, is well-defined. This is
the subject of the next section.

III | DEFORMING THE SCALAR QUANTUM FIELD

In this Section, we investigate the effect of deformation directly on a free scalar field. The unitary
group used for deformation, is given by the infinitesimal generator X that is unitary equivalent to the
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momentum operator. Due to the unitary equivalence, the vector operator X is an essential self-adjoint
operator on a dense domain and therefore defines a strongly continuous unitary group that we denote by
V (b) := eibX . Furthermore, by using this Abelian group, an adjoint action can be defined and used for
deformation in the framework of warped convolutions, Buchholz et al. (2011); Buchholz and Summers
(n.d.).

Definition Let the one-particle Hilbert space be given as H1 :=L2(dnµ(p),Rn)= { f :
∫

dnµ(p)| f (p)|2 <

∞,dnµ(p) := (2ωp)
−1 dnp,(ωp,p)∈H+

m := {p∈Rd |p2 = m2, p0 > 0}} for d−1 = n≥ 1 and let ∆(P)
be the dense domain of all functions from H1 vanishing at infinity faster than any inverse polynomial in
pk given as follows, (Swieca & Voelkel, 1973, Equation III.24)

∆(P) = { f ∈ H1 : |
(
p2)r

f (p)| ≤ cr( f )< ∞; r = 0,1,2, . . .}. (3)

∆(P) is contained in the domain of the essential self-adjoint momentum operators. The extended dense

domain of the second quantized momentum operator Pµ is given by ∆k(P) :=
k⊗

i=1

∆(P) (for details

concerning second-quantization see (Reed & Simon, 1975a, Theorem VIII.33) and (Reed & Simon,
1975a, Example 2)).

Definition Let the operator Xµ be defined by a unitary equivalence to the momentum operator as
follows,

Xµ = Γ(V−1)PµΓ(V ), (4)

where the operator Γ(V ) :=
∞⊕

k=0

V⊗k is the second quantization of a unitary operator V : H1→H1 which

may depend on several real parameters.

Proposition 5. The operator Xµ defined by unitary equivalence (see Definition III) is an essentially
self-adjoint operator on the dense domain

∆k (X) := Γ(V−1)∆k (P), (5)

commuting along its components, i.e.

[Xµ,Xν] = 0.

Therefore, the following operator

V (p) = eipµXµ
, (6)

is unitary and defines a strongly continuous group for all p ∈ Rd .

Proof. By unitary equivalence essential self-adjointness of the operator Xµ follows. The density of the
domain ∆k (X) follows from the density of the unitary equivalent domain ∆k (P) (see (Swieca & Voelkel,
1973, Lemma 2)). In order to show the commutation relations between the different components of the
operator Xµ we use the unitary equivalence to the commuting momentum operators.

[Xµ,Xν] = [Γ(V−1)PµΓ(V ),Γ(V−1)PνΓ(V )]

= Γ(V−1)[Pµ,Pν]Γ(V )

= 0,
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where in the last line we used the fact that the momentum operator commutes along its components.
Since X is an essential self-adjoint operator it follows that its closure is a self-adjoint operator and from
((Reed & Simon, 1975a, Theorem IIIX.7)) it follows that V (p) defines a strongly continuous unitary
group.

Definition Let θ be a real skew-symmetric matrix w.r.t. the Lorentzian scalar-product on Rd and let
χ ∈ S(Rd×Rd) with χ(0,0) = 1. Furthermore, let φ( f ) be the massive free scalar field smeared out
with functions f ∈ S(Rd). Then, the operator valued distribution φ( f ) deformed with the operator Xµ
(see Definition III), denoted as φθ,X ( f ), is defined on vectors of the dense domain ∆k (X) as follows

φθ,X ( f )Ψk : = (2π)−d lim
ε→0

∫∫
dxdye−ixy

χ(εx,εy)βθx(φ( f ))V (y)Ψk

= (2π)−d lim
ε→0

∫∫
dxdye−ixy

χ(εx,εy)βθx

(
a( f−)+a∗( f+)

)
V (y)Ψk

=:
(

aθ,X ( f−)+a∗θ,X ( f+)
)

Ψk. (7)

The automorphism β is defined by the adjoint action of the unitary operator V (y) and the test functions
f±(p) in momentum space are defined as follows

f±(p) :=
∫

dx f (x)e±ipx, p = (ωp,p) ∈ H+
m . (8)

The integral (7) has to be understood as an integral in oscillatory sense, Rieffel (1993). The unbounded-
ness of the operator Xµ questions the existence of the integral since we are dealing with unbounded
operator valued distributions. To show that the integral (7) converges we use the unitary equivalence.

The following lemma proves the existence of a unitary transformation connecting the warped convolu-
tions of a free scalar field using the momentum operator, and the warped convolutions of a free scalar
field using the unitary equivalent operator X .

Lemma 6. For f ∈ S(Rd) and Ψk ∈ ∆k (X), a transformation exists that maps the field deformed with
the momentum operator φθ,P( f ) to the field deformed with operator X, i.e. φθ,X ( f ). This transformation
is given as follows

φθ,X ( f )Ψk = Γ(V−1)φ(V f )θ,P Γ(V )Ψk. (9)

Proof. By using the unitary equivalence given in Equation (4), the lemma is easily proven

φθ,X ( f )Ψk = (2π)−d lim
ε→0

∫∫
dxdye−ixy

χ(εx,εy)V (θx)φ( f )V (−θx+ y)Ψk

= (2π)−d lim
ε→0

∫∫
dxdye−ixy

χ(εx,εy)Γ(V−1)U(θx)Γ(V )φ( f )Γ(V−1)

×U(−θx+ y)Γ(V )Ψk

= Γ(V−1)
(
Γ(V )φ( f )Γ(V−1)

)
θ,P Γ(V )Ψk.

Lemma 7. For Φk ∈ ∆k (X) the familiar bounds of the free field hold for the deformed field φθ,X ( f )
and therefore the deformation with operator Xµ is well-defined.
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Proof. By using Lemma 6 one obtains the familiar bounds for a free scalar field. For Φk ∈ ∆k (X) there
exists a Ψk ∈ ∆k (P) such that the following holds∥∥φθ,X ( f )Φk

∥∥= ∥∥φθ,X ( f )Γ(V−1)Ψk
∥∥

=
∥∥(Γ(V )φ( f )Γ(V−1))θ,PΨk

∥∥= ∥∥(φ(V f ))θ,PΨk
∥∥

≤
∥∥∥(a(V f−))θ,PΨk

∥∥∥+∥∥(a∗(V f+))θ,PΨk
∥∥

≤
∥∥V f+

∥∥∥∥∥(N +1)1/2
Ψk

∥∥∥+∥∥V f−
∥∥∥∥∥(N +1)1/2

Ψk

∥∥∥
=
∥∥ f+

∥∥∥∥∥(N +1)1/2
Ψk

∥∥∥+∥∥ f−
∥∥∥∥∥(N +1)1/2

Ψk

∥∥∥ .
where in the last lines we used the triangle inequality, the Cauchy-Schwarz inequality and the bounds
given in (Grosse & Lechner, 2007).

The obtained bounds are exactly the bounds of the free scalar field. Thus by the bounds of the
free field it follows that the field deformed with the operator Xµ is well-defined.

1 | Wightman Properties of the Deformed QF

It is important to note that due to the unitary equivalence we can show that the deformed field φθ,X
satisfies the Wightman properties with the exception of covariance and locality. This is the subject of
the following proposition. We shall use the symbol H for Bosonic Fockspace and the symbol Ω to
denote the vacuum.

Proposition 8. Let θ be a real skew-symmetric matrix w.r.t. the Lorentzian scalar-product on Rd and
f ∈ S(Rd).

A) The dense subspace D of vectors of fi-
nite particle number is contained in the do-
main Dθ,X = {Ψ ∈ H|

∥∥φθ,X ( f )Ψ
∥∥2

< ∞} of
any φθ,X ( f ). Moreover, φθ,X ( f )D ⊂ D and
φθ,X ( f )Ω = φ( f )Ω.

B) For scalar fields deformed via warped convo-
lutions and Ψ ∈D ,

f 7−→ φθ,X ( f )Ψ

is a vector valued tempered distribution.

C) For Ψ ∈D and φθ,X ( f ) the following holds

φθ,X ( f )∗Ψ = φθ,X ( f )Ψ.

For real f ∈ S(Rd), the deformed field φθ,X ( f )
is essentially self-adjoint on D .

D) The Reeh-Schlieder property holds: Given an
open set of space-time O ⊂ Rd , then

Dθ,X (O) := span{φθ,X ( f1) . . .φθ,X ( fk)Ω : k∈N,

f1 . . . fk ∈ S(O)}is dense in H.

Proof. a) The fact that D ⊂Dθ,X , follows immediately from Lemma 7 , since the deformed scalar field
satisfies the same bounds as a free field. The fact that the deformed field acting on the vacuum is the
same as the free field acting on Ω, can be easily shown due to the property of the unitary operators
V (b)Ω = Ω (see (Reed & Simon, 1975b, Chapter X.7)).
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b) By using Lemma 7 one can see that the right hand side depends continuously on the function
f , hence the temperateness of f 7−→ φθ,X ( f )Ψ, Ψ ∈D follows.

c) First, we prove hermiticity of the deformed field φθ,X ( f ). This is done along the same lines
as the proof of Lemma 1, demonstrating hermiticity of a deformed operator if the undeformed one is
self-adjoint.

φθ,X ( f )∗Ψ = (2π)−d
(

lim
ε→0

∫∫
dxdye−ixy

χ(εx,εy)βθx(φ( f ))V (y)
)∗

Ψ

= (2π)−d lim
ε→0

∫∫
dxdye−ixy

χ(εx,−εy)V (y)βθx(φ( f ))∗Ψ

= (2π)−d lim
ε→0

∫∫
dxdye−ixy

χ(ε(x+θ−1y),−εy)βθx(φ( f ))V (y)Ψ

= φθ,X ( f )Ψ.

In the last lines we performed a variable substitution (yµ→−yµ) and
(
xµ→ xµ +(θ−1y)µ

)
.

For real f we can prove the essential self-adjointness of the hermitian deformed field φθ,X ( f ). The first
step consists in showing that the deformed field has a dense set of analytic vectors. Next, by Nelson’s
analytic vector theorem, it follows that the deformed field φθ,X ( f ) is essentially self-adjoint on this
dense set of analytic vectors, (for similar proof see (Bratteli & Robinson, 1996, Chapter I, Proposition
5.2.3)).

For Ψk ∈ Hk the estimates of the l-power of the deformed field φθ,X ( f ), are given in the following∥∥∥φθ,X ( f )l
Ψk

∥∥∥≤ 2l/2(k+ l)1/2(k+ l−1)1/2 · · ·(k+1)1/2 ‖ f‖l ‖Ψk‖ ,

where in the last lines we used Lemma 7 for the estimates of the deformed field. Finally, we can write
the sum

∑
l≥0

|t|l

l!

∥∥∥φ( f )l
Ψk

∥∥∥≤∑
l≥0

(
√

2|t|)l

l!

(
(k+ l)!

k!

)1/2

‖ f‖l ‖Ψk‖< ∞

for all t ∈ C. It follows that each Ψ ∈D is an analytic vector for the deformed field φθ,X ( f ). Since the
set D is dense in H, Nelson’s analytic vector theorem implies that φθ,X ( f ) is essentially self-adjoint on
D .

d) For the proof of the Reeh-Schlieder property we use the unitary equivalence given in Defini-
tion (III). First note that the spectral properties of the unitary operator V (y), are the same as for the
unitary operator U(y) of translations. This leads to the application of the standard Reeh-Schlieder
argument Streater and Wightman (1989) which states that that Dθ(O) is dense in H if and only if
Dθ(Rd) is dense in H. We choose the functions f1, . . . , fk ∈ S(Rd) such that the Fourier transforms of
the functions do not intersect the lower mass shell and therefore the domain Dθ(Rd) consists of the
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following vectors

Γ(V )φθ,X ( f1) . . .φθ,X ( fk)Ω = Γ(V )a∗θ,X ( f+1 ) . . .a∗θ,X ( f+k )Ω

= Γ(V )Γ(V−1)a∗θ,P(V f+1 ) . . .a∗θ,P(V f+k )Γ(V−1)Ω

= a∗θ,P(V f+1 ) . . .a∗θ,P(V f+k )Ω

=
√

m!Pm(Sm(V f+1 ⊗·· ·⊗V f+k )),

where Pk denotes the orthogonal projection from H⊗k
1 onto its totally symmetric subspace Hk, and

Sk ∈ B(H⊗k
1 ) is the multiplication operator given as

Sk(p1, . . . , pk) = ∏
1≤l< j≤k

eiplθp j .

Since the operator Γ(V ) is unitary, functions V f+k ∈ S(Rd) for f+k ∈ S(Rd) will give rise to dense sets of
functions in H1. Following the same arguments as in Grosse and Lechner (2007) the density of Dθ(Rd)
in H follows. Note that we proved the density for vectors Γ(V )φθ,X ( f1) . . .φθ,X ( fk)Ω and not for the
vectors without the application of Γ(V ) as stated in the proposition. However, we use the unitarity of
Γ(V ) to argue that vectors dense in H stay dense after the application of a unitary operator.

2 | Wedge-Covariance and Wedge-Locality

The authors in Grosse and Lechner (2007) constructed a map Q : W 7→ Q(W ) from a set W0 := L↑+W1

of wedges, where W1 := {x ∈ Rd : x1 > |x0|} to a set Q0 ⊂ R−d×d of skew-symmetric matrices. In the
next step they considered the corresponding fields φW (x) := φ(Q(W ),x).

Hence, the correspondence is understood as a scalar field φ(Q(W ),x) on a NC space-time, which
can be equivalently realized as a field defined on the wedge. The homomorphism Q : W 7→ Q(W ) is
given by the following definitions.

Definition Let θ be a real skew-symmetric matrix on Rd then the map γΛ(θ) is defined as follows

γΛ(θ) :=
{

ΛθΛ
T , Λ ∈ L↑,

−ΛθΛ
T , Λ ∈ L↓.

(10)

Definition θ is called an admissible matrix if the realization of the homomorphism Q(ΛW ) defined by
the map γΛ(θ) is a well defined mapping. This is the case iff θ has in d dimensions the following form

0 λ 0 · · · 0
λ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , λ≥ 0. (11)

For the physical most interesting case of 4 dimensions the skew-symmetric matrix θ has the more
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general form 
0 λ 0 0
λ 0 0 0
0 0 0 η

0 0 −η 0

 , λ≥ 0,η ∈ R. (12)

Note that the skew-symmetry is given w.r.t. the Minkowski metric.

By using the former definitions we give the following correspondence of the fields,

φW ( f ) := φ(Q(W ), f ) = φθ,X ( f ). (13)

Next, we turn our attention to the covariance and locality of the defined fields. Wedge-covariance and
-locality seems to be the appropriate locality on non-commutative space-times, Soloviev (2013). In the
following we lay out the definitions of a wedge-covariant and a wedge-local field, (Grosse and Lechner
(2007), Definition 3.2).

Definition Let φ = {φW : W ∈W0} denote the family of fields satisfying the domain and continuity
assumptions of the Wightman axioms. Then, the field φ is defined to be a wedge-local quantum field if
the following conditions are satisfied:

• Covariance: For any W ∈W0 and f ∈ S(Rd)
the following holds

U(y,Λ)φW ( f )U(y,Λ)−1 = φΛW ( f ◦ (y,Λ)−1), (y,Λ) ∈ P ↑+,
U(0, j)φW ( f )U(0, j)−1 = φ jW ( f ◦ (0, j)−1),

where j represents the space-time reflections,
i.e. xµ→−xµ.

• Wedge-locality: Let W,W̃ ∈ W0 and f ∈
S(R2).

If

W + supp f ⊂ (W̃ + supp g)′,

then

[φW ( f ),φW̃ (g)]Ψ = 0, Ψ ∈D.

The prime in the former definition denotes the causal complement. The last definition can be given in
a simpler form due to the geometrical properties of the wedges. This is the subject of the following
lemma, (Grosse and Lechner (2007), Lemma 3.3).

Lemma 9. Let φ = {φW : W ∈W0} denote the family of fields satisfying the domain, continuity and
covariance assumptions stated in Definition 2. Then φ is wedge-local if and only if

[φW1( f ),φ−W1(g)]Ψ = 0, Ψ ∈D,

for all f ,g ∈C∞
0 (Rd) with supp f ⊂W1 and supp g⊂−W1.

So let us first investigate the wedge-covariance properties of our deformed fields. The result is given in
the following proposition.
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Proposition 10. The deformed fields φθ,X ( f ) transform under the adjoint action of the proper or-
thochronous Poincaré group as follows,

U(x,Λ)φθ,X ( f )U(x,Λ)−1 = φθ,U(x,Λ)XU(x,Λ)−1( f ◦ (x,Λ)−1).

Let the operator X be covariant w.r.t. the proper orthochronous Lorentz group. Then, the field is
wedge-covariant w.r.t. the proper orthochronous Lorentz group i.e.

U(0,Λ)φθ,X ( f )U(0,Λ)−1 = φγΛ(θ),X ( f ◦ (0,Λ)−1).

Moreover, if the operator X is covariant w.r.t. the proper orthochronous Poincaré group and the
space-time reflections, then the field φ is a wedge-covariant field.

Proof.

U(x,Λ)φθ,X ( f )U(x,Λ)−1

= (2π)−d lim
ε→0

∫∫
dydue−iyu

χ(εy,εu)U(x,Λ)βθy(φ( f ))V (u)U(x,Λ)−1

= (2π)−d lim
ε→0

∫∫
dydue−iyu

χ(εy,εu)VΛ,x(θy)φ( f ◦ (x,Λ)−1)VΛ,x(−θy+u)

= φθ,U(Λ,x)XU(Λ,x)−1( f ◦ (x,Λ)−1),

where VΛ,x(y) :=U(x,Λ)V (y)U(x,Λ)−1 = eiyU(x,Λ)XU(x,Λ)−1
. Now this expression is nothing else than

the operator X used for deformation but unitarly transformed. The second and third part follow from
Proposition 3, where in the case of space-time reflections one replaces the smearing function f with
f .

Remark An operator that is translation invariant is not equivalent to the momentum operator, for
example

X =U(Λ)PU(Λ)−1, X = eiaDPe−iaD,

where D is the dilatation operator which is only essentially self-adjoint in the massless case, Wess
(1959).

What information do we gain from the former proposition? It gives us the transformational behavior of
a field defined on a wedge that can be associated with a excitation on a non-commutative space-time.
Under the assumption of Lorentz covariance for the operator, it states that the field obtained by a
Poincaré transformation associates to a transformed field generated by deformation with U(x)XU(x)−1.
The interpretation of the result is the following. Since the deformed fields generated by X are associ-
ated to a non-commutative space-time, fields generated by U(x)XU(x)−1 correspond to fields on an
equivalent but translated quantum space-time. Hence, we already are able to deduce from this result
that generators of constant quantum space-times shall be translationally invariant. This will be further
studied in Section V where we examine the isomorphism to non-commutative space-times.

Next we turn to the original proof of wedge-locality. It is usually done by showing that the func-
tions used to smear the field are entire analytic and therefore they can be analytically continued to the
complex upper half plane. The proof is done by introducing suitable coordinates given by,

m⊥ := (m2 + p⊥)1/2, p⊥ := (p2, . . . , pn), ϑ :=
p1

m⊥
.
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In the new coordinates we have the following measure and on-shell momentum vector,

dnµ(p) = dn−1 p⊥dϑ, p(ϑ) :=

 m⊥ coshϑ

m⊥ sinhϑ

p⊥


By using these new coordinates, the analyticity of the function and the analytic continuation one obtains
for the smeared functions f ∈C∞

0 (W1) and g ∈C∞
0 (−W1), (see 22)

f−(p⊥,ϑ+ iπ) = f+(−p⊥,ϑ), g−(p⊥,ϑ+ iπ) = g+(−p⊥,ϑ). (14)

Now for the proof of wedge-locality we have to demand that the unitary transformed functions, i.e.
V f−(p⊥,ϑ) and V g+(p⊥,ϑ) satisfy the demanded analyticity and analytical continuation properties.
Note that this restrains the unitary operators used in the definition of the operator that is unitary
equivalent to the momentum operator. By taking the former definition and lemma into account the
following proposition concerning the deformed field φθ,X follows.

Proposition 11. Let the unitary transformation V leave the support for all f ,g∈C∞
0 (Rd) with supp f ⊂

W1 and supp g⊂−W1 covariant, i.e.

supp V f ⊂W1 supp V g⊂−W1.

Then, the family of fields φ= {φW : W ∈W0} defined by φW ( f ) := φ(Q(W ), f )= φθ,X ( f )= φθ,V−1PV ( f )
are wedge-local fields on the Bosonic Fockspace H+.

Proof. For the proof we use Proposition 4, the unitary equivalence given in Lemma 6 and the proof
that the free scalar field deformed with the momentum operator is wedge local, Grosse and Lechner
(2007). To use Proposition 4, we have to show that the following commutator vanishes for f ∈C∞

0 (W1)
and g ∈C∞

0 (−W1),

[βθx(φ( f )),β−θy(φ(g))] = [βθx(a( f−)),β−θy(a∗(g+)]− [β−θy(a(g−)),βθx(a∗( f+)]

= Γ(V−1)[αθx
(
φ(V f )

)
,α−θy

(
φ(V g)

)
]Γ(V ),

where in the former lines all other terms are equal to zero and the unitary equivalence was used. Let us
first take a look at the first expression of the commutator,

[αθx
(
Γ(V )a( f−)Γ(V−1)

)
,α−θy

(
Γ(V )a∗(g+)Γ(V−1)

)
]

=
∫

dnµ(p)
∫

dnµ(k)(V f−)(p)(V g+)(k)e−ipθxe−ikθy[a(p),a∗(k)]

=
∫

dnµ(p)(V f−)(p)(V g+)(p)e−ipθ(x+y)

=
∫

dn−1 p⊥dϑ(V f−)(p⊥,ϑ)(V g+)(p⊥,ϑ)e−ip(ϑ)θ(x+y)

=
∫

dn−1 p⊥dϑ(V f+)(−p⊥,ϑ)(V g−)(−p⊥,ϑ)e−ip(ϑ+iπ)θ(x+y)

=
∫

dnµ(p)(V f+)(p)(V g−)(p)eipθ(x+y),

where in the last lines we used the unitary equivalence (4), the boundedness and analyticity properties
of the unitary transformed functions f ,g (see (Grosse & Lechner, 2007, Proposition 3.4)) and we
shifted the contour of the integral from R to R+ iπ. Next, we look at the second expression of the
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commutator and obtain the following,

[α−θy
(
Γ(V )a(g−)Γ(V−1)

)
,αθx

(
Γ(V )a∗( f+)Γ(V−1)

)
]

=
∫∫

dnµ(p)dnµ(k)(V f+)(p)(V g−)(k)eipθxeikθy[a(k),a∗(p)]

=
∫

dnµ(p)(V f+)(p)(V g−)(p)eipθ(x+y).

Since the second expression of the commutator [βθx(φ( f )),β−θy(φ(g))] is equal to the first one with a
sign difference, the commutator vanishes. Hence, the fields φW are wedge-local.

Concerning the wedge-covariance we imposed a strong requirement on the choice of our unitary
operators. In particular, we demanded the unitary transformation V to leave the support for all
f ,g ∈ C∞

0 (Rd) with supp f ⊂W1 and supp g ⊂ −W1 covariant. Are there any examples of such
transformations? This question will be answered positively by introducing a few examples.

Example We first mention the Lorentz-transformation, i.e. Γ(V ) =U(Λ) with Λ ∈ SO(1,1)×SO(d−
2).

Proof. For the right wedge, i.e. x1 > |x0| we have to verify the following inequality

(Λx)1 > |(Λx)0|.

This can be easily verified by using the property of the wedge and the explicit form of the Lorentz
boost in 0−1 direction,

−γβx0 + γx1 > |γx0− γβx1|
−βx0 + x1 > | x0−βx1|,

since the Lorentz-factor γ > 0, moreover

−βx0 + x1 >−βx0 + |x0|> 0,

since the velocity coefficient |β|< 1. Thus we obtain

(−βx0 + x1)
2 > (x0−βx1)

2

x2
1(1−β

2)> x2
0(1−β

2)

x1 > |x0|.

The proof for the left wedge is analogous.

This example is well known and intuitively easy to understand, since the group SO(1,1)×SO(d−2)⊂
L↑+ is the stabilizer group L↑+(W1,)⊂ L↑+ of W1.

Example Second we mention the unitary operator of translations in the momentum space Γ(V (~k)) =
ei~k·~X , where ~X is the second-quantized Newton-Wigner-Pryce operator. It was studied thoroughly in a
QFT-context in Much (2013, 2015). In particular the operator acts on the particle operators as follows,

Γ(V (~k))a(p)Γ(V (~k)−1) = a(p−k), Γ(V (~k))a∗(p)Γ(V (~k)−1) = a∗(p−k).

Since the coordinate space remains invariant under such a transformation in the momentum space, the
momentum-translation V (~k) is our second most prominent example.

REF-UNAH / Vol. 6 - No. 2 / 140 - 148



A. MUCH REVISTA DE LA ESCUELA DE FÍSICA, UNAH

Example Note that the translation operator U(y) = eiyµPµ
for y ∈W1 leaves the support of f ∈C∞

0 (Rd)
covariant (see Buchholz et al. (2011)). By using the former examples we can take arbitrary arrangements
of the operators U(y), Γ(V (~k)) and U(Λ) and thus obtain a whole class of wedge-local fields.

Example Although we intend to focus on the massless scalar field in a forthcoming work, we mention
in this context the special conformal transformation. This operator leaves the wedge covariant and
was intensively studied in Much (2012). The operator Γ(V ) that gives the unitary equivalence to the
momentum operator is in the special conformal case the inversion operator constructed by Swieca and
Voelkel (1973).

Example Another interesting unitary operator that should be mentioned in the massless case is given by
the dilation operator, i.e. Γ(V ) = eibD. It leaves the wedge covariant, since it represents merely a scale
transformation and the operator Γ(V−1)PΓ(V ) transforms covariantly under Poincaré transformations.

The reader should be aware of the fact that wedge-covariance was not shown for the field φθ,X although
it is obligatory when proving wedge-locality. Nevertheless, by reducing the proof of wedge-locality for
the field φθ,X ( f ) to the field φθ,P(V f ), we were able to circumvent this particular problem.

IV | SCATTERING

The next task of this work is to calculate the Scattering-matrix by using tempered polarization
free generators, (Borchers et al., 2001; Schroer, 1997). In (Borchers et al., 2001) a framework was
developed to calculate two-particle scattering of such a given theory, where the construction relies on
the Haag-Ruelle scattering theory. In order to proceed let us briefly lay out the necessary definitions
and properties.

Definition Let W ∈W0 and f ∈ S(Rd). Then the following properties constitute a tempered polariza-
tion free generator φW ( f ),

A) φW ( f ) is a wedge-local field.

B) φW ( f ) and φW ( f )∗ are closed operators with
Ω contained in their respective domains.

C) φW ( f )Ω and φW ( f )∗Ω are single particle
states.

D) φW ( f ) is said to be temperate if there is a
dense subspace D of its domain which is stable
under translation, such that

x 7→ φW ( f )U(x)Ψ, ∀Ψ ∈D (15)

is strongly continuous and polynomially
bounded in the norm for large x.

Lemma 12. Let W ∈ W0 and f ∈ S(Rd) and let the unitary operator Γ(V ) be as demanded in
Proposition 11. Then, the set of fields φ(Q(W ), f ) = φθ,X ( f ) constitute the properties of tempered
polarization free generators.

Proof. The first item in Definition IV is wedge-locality. This follows easily from the choice of the
unitary operator Γ(V ) (see Proposition 11). Item b) holds since, φθ,X ( f ) is a densely defined and
symmetric operator, hence closeable. To see that the vacuum vector is contained in the domain see
Proposition 8, a). It is straightforward to prove that the deformed fields generate single particle states
and this property follows as well from Proposition 8, a).
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Now let us turn our attention to the hardest part of this proof, the temperateness. Proving conti-
nuity for the expression φθ,X ( f )U(x)Ψ is equivalent to proving it for φθ,P(V f )Γ(V )U(x)Ψ,

||φθ,P(V f )Γ(V )U(x)Ψ−φθ,P(V f )Γ(V )Ψ||= ||φθ,P(V f )Γ(V )(U(x)−1)Ψ||

≤
∥∥V f+

∥∥∥∥∥(N +1)1/2
Γ(V )(U(x)−1)Ψ

∥∥∥+∥∥V f−
∥∥∥∥∥(N +1)1/2

Γ(V )(U(x)−1)Ψ
∥∥∥

=
∥∥ f+

∥∥∥∥∥(N +1)1/2(U(x)−1)Ψ
∥∥∥+∥∥ f−

∥∥∥∥∥(N +1)1/2(U(x)−1)Ψ
∥∥∥ x→0
−−−−→ 0,

where in the last lines we used the fact that Ψ ∈D and by applying unitary operators that do not change
the particle number on vectors of finite particle number, we have Γ(V )U(x)Ψ ∈D and hence we can
use the bounds given in Lemma 7. Moreover, in the last expression we use the strong continuity of U
for Ψ ∈D and thus the scalar product and the limit can be interchanged.

Of course, the boundedness can be proven by following similar arguments as for the continuity.
Nevertheless, a more elegant route is chosen, i.e.

||φθ,X ( f )U(x)Ψ||= (2π)−d || lim
ε→0

∫∫
dydue−iyu

χ(εy,εu)βθy(φ( f ))V (u)U(x)Ψ||

= (2π)−d || lim
ε→0

∫∫
dydue−iyu

χ(εy,εu)V−x(θy)φ( f ◦ (−x))V−x(−θy+u)Ψ||

= ||φθ,U(x)−1XU(x)( f ◦ (x))Ψ||

≤
∥∥V ( f+ ◦ (x))

∥∥∥∥∥(N +1)1/2
Ψ

∥∥∥+∥∥V ( f− ◦ (x))
∥∥∥∥∥(N +1)1/2

Ψ

∥∥∥
=
∥∥ f+

∥∥∥∥∥(N +1)1/2
Ψ

∥∥∥+∥∥ f−
∥∥∥∥∥(N +1)1/2

Ψ

∥∥∥ .
where V−x(y)=U(x)−1V (y)U(x)= eiyU(x)−1XU(x). Now this expression is nothing else than the operator
X used for deformation but unitarly transformed. Hence, we simply have another operator that is unitary
equivalent to the momentum operator. By using the bounds in Lemma 7, boundedness follows.

Next, let us define a function for t ∈ R and f ∈ S(Rd) by,

ft(x) = (2π)−d/2
∫

d p f̃ (p)eipxei(p0−ωp)t .

The support properties of the functions ft for asymptotic t are used in the subsequent discussion. To
proceed, let us define the velocity support of f by,

Ξ( f ) = {(1,p/ωp) : p ∈ supp f̃}.

It follows that the support of ft is contained in t Ξ( f ). Furthermore, the partial ordering of the sets with
reference to the wedge W0 have to be introduced.

Definition Let Ξa, Ξb ⊂ Rd be compact sets. Ξa is said to be the precursor of Ξb, Ξa ≺ Ξb in formula
form, if Ξa−Ξb is contained in W ∈W0.

By using the former definitions and sophisticated techniques the authors were able to show that
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φW ( ft)φW ′(gt)Ω, converges to the incoming respectively outgoing two-particle states for t→±∞. For
the test functions f ,g with disjoint momentum supports in a small neighborhood of some point on the
mass shell one obtains,

lim
t→∞

φW ( ft)φW ′(gt)Ω = (φW ( f )Ω×φW ′(g)Ω)out if Ξ(g)≺ Ξ( f ),

lim
t→−∞

φW ( ft)φW ′(gt)Ω = (φW ( f )Ω×φW ′(g)Ω)in if Ξ( f )≺ Ξ(g),

where we used the standard notation for collision states. Our task is now to follow similar arguments
made in (Grosse & Lechner, 2007) in order to calculate the amplitudes of a two-particle scattering. First
note that the limits will depend on the wedge as well. Moreover, our model exhibits an independence
of t ∈ R for the expression φW ( ft)φW ′(gt)Ω. This in particular lies in the definition of φW ( ft), f+, f+t
and the support properties of f̃ . The particular form of the scattering states are given in the following
theorem.

Theorem 13. Let W ∈W0 and f ∈ S(Rd) and let the unitary operator V be as demanded in Proposition
11. Then the massive deformed field φθ,X satisfies the properties of a tempered polarization free
generator and the explicit form of two-particle scattering states are given for test functions f ,g ∈ S(Rd)
by

lim
t→∞

φW ( ft)φW ′(gt)Ω = Γ(V−1)φθ,P(V f+)φθ,P(V g+)Ω if Ξ(g)≺ Ξ( f ),

lim
t→−∞

φW ( ft)φW ′(gt)Ω = Γ(V−1)φθ,P(V f+)φθ,P(V g+)Ω if Ξ( f )≺ Ξ(g).

Proof. The property of tempered polarization is the main result of Lemma IV. The scattering states can
be simply calculated by using the unitary equivalence given in Lemma 9.

V | ISOMORPHISM TO A NON-COMMUTATIVE SPACE-TIME

In (Grosse & Lechner, 2007) the deformed fields correspond to free fields defined on the representation
space of the Moyal-Weyl plane V . This correspondence is proven by defining a unitary operator
which maps the Fock space H to the tensor product space V ⊗H. Hence, the fields deformed with the
momentum operator are on one hand wedge-covariant, wedge-local and nontrivial and on the other
hand they correspond to free fields on a non-commutative space-time (NCST). Therefore, one question
naturally arises in the context of this more general setting. To which NCST do fields, deformed with
the unitary transformed operator, correspond to? In this section we partially answer this question by
constructing a correspondence to a NCST.

Let V be the representation space of the *-algebra which is generated by the self-adjoint operators x̂
that fulfill the commutator relation

[x̂µ, x̂ν] =−2iθµν, (16)

where θ is the center of the algebra. An isomorphism exists between the ∗-algebras of fields deformed
with the momentum operator and the ∗-algebra of the free fields on non-commutative Minkowski
space V , (Grosse & Lechner, 2007). This equivalence is given by the following unitary operator
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VP,ξ =
∞⊕

n=0

V (n)
P,ξ : H→ V ⊗H, with ξ ∈ V and ||ξ||V = 1,

(
V (n)

P,ξ Ψn

)
(p1, . . . ,pn) = Ψn (p1, . . . ,pn) · e

i
n
∑

k=1
pk x̂

ξ, Ψn ∈ Hn. (17)

Hence, the following equations hold in a distributional sense

a⊗,P(p) := e−ipx̂⊗a(p) =VP,ξaθ,P(p)V ∗P,ξ, (18)

where an analogous relation holds for the creation operator. Moreover, it follows from Vθ,ξΩ = ξ⊗Ω

that the n-point functions of φ⊗,P, i.e. the free fields on non-commutative Minkowski space, coincide
with the those of the deformed field φθ,P,

〈(ξ⊗Ω),φ⊗,P( f1) . . .φ⊗,P( fn)(ξ⊗Ω)〉= 〈Ω,φθ,P( f1) . . .φθ,P( fn)Ω〉. (19)

Now since we deform with operators other than the momentum operator, we should obtain an isomor-
phism describing the equivalence of the deformed fields with fields living on different non-commutative
space-times. These space-times correspond in a certain manner to the Moyal-Weyl since we deform
with operators that are unitary equivalent to the momentum operator, that in turn generates the Moyal-
Weyl spacetime. One path leading to the newly generated non-commutative space-time is by using the
twist deformation (see Akofor, Balachandran, Jo, and Joseph (2007); Chaichian and Vernov (2011);
Grosse and Wulkenhaar (2003); Soloviev (2013); Tureanu (2006); Zahn (2006) and references therein).
In particular one could calculate the NC space-time by using the twisted commutator between the
coordinates as already done for the special conformal operator in (Much, 2012). Next, we examine the
equivalence of our deformed fields with the twist deformation approach. In this context the next lemma
gives a unitary operator mapping the deformed fields φθ,X to fields on a non-commutative space.

Proposition 14. Let the unitary operator ṼX ,ξ =
∞⊕

n=0

Ṽ (n)
X ,ξ

: H→V ⊗H, with ξ ∈V and ||ξ||V = 1, be

given by unitarily equivalence to VP,ξ as follows,

ṼX ,ξ = (1V ⊗Γ(V−1))VP,ξΓ(V ). (20)

Then ṼX ,ξ is an isomorphism of the ∗- algebras generated by the deformed fields φθ,X ( f ) to unitary
equivalent ∗- algebras of the unitary transformed fields on the Moyal-Weyl space.

Proof. Prior to the proof let us give the following expression,

VP,ξ φθ,P(V f )V ∗P,ξ = φ⊗,P(V f ),

where this relation can be easily seen by the virtue of Equation (17). In the next step we calculate the
adjoint action of ṼX ,ξ on the the deformed fields φθ,X ( f ).

(1V ⊗V−1)VP,ξ V (φθ,X ( f ))V−1︸ ︷︷ ︸
φθ,P(V f )

V ∗P,ξ(1V ⊗V ) = (1V ⊗V−1)φ⊗,P(V f )(1V ⊗V )

The equivalence can also be proven on the level of the n-point functions. Hence, we have shown that the
deformed fields φθ,X ( f ) are unitarily equivalent to the transformed fields that live on the Moyal-Weyl
space, i.e. φ⊗,P(V f ). Note that the former equations hold in the sense of distributions.
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The following notation is self explanatory,

φ⊗,X ( f ) := (1V ⊗V−1)φ⊗,P(V f )(1V ⊗V ), (21)

since we obtained this operator by an isomorphism from the deformed fields φθ,X ( f ) to the tensor
product space V ⊗H. Next, we investigate in which sense our "twisted" fields φ⊗,X ( f ) fit into the
framework of twisted deformation. In this deformation, the point-wise product of two scalar fields is
replaced by the so called twist product. Let us give a precise mathematical definition of the former
statement. Let µ : S(Rd)⊗S(Rd)→ S(Rd) denote the point-wise product of Schwartz functions. Then,
the twisted product denoted by µθ,P can be defined as µθ,P = µ◦Fθ,P where

Fθ,P = e−iθµνPµ⊗Pν

. (22)

In a remarkable paper (Zahn, 2006), the author gave a rigorous meaning to the twist product of two
scalar fields by going to momentum space. Moreover, it was shown that there exists an equivalence
between the product of twist deformed scalar fields and scalar fields introduced on the tensor product
space V ⊗H given in (Doplicher, Fredenhagen, & Roberts, 1995). In particular the formula was given
by

φ⊗,P( f1)φ⊗,P( f2) = φ
2
⊗,P(µ◦Fθ,P( f1⊗ f2)), (23)

where the following notation was introduced,

φ
n
⊗,P( f ) =

∫ n

∏
i=1

dki

(
ei(k1+···+kn)x̂⊗ f̂ (k1, . . . ,kn)

n

∏
i=1

φ̌(ki)

)
.

Remark The notation introduced in the context of twist-deformation is written off-shell. The reason
therein lies in the extension of the twisted-QFT to scattering. However, in this work we shall proceed
by going on-shell, i.e. φ̌(k) = δ(k2−m2)φ̃(k).

By using the former notations and products of the twisted fields we are able to give the following
lemma.

Lemma 15. The product of two twisted fields φ⊗,X ( f1)φ⊗,X ( f2) is given by unitary equivalence to the
product of two Moyal-Weyl twisted fields as follows,

φ⊗,X ( f1)φ⊗,X ( f2) = (1V ⊗Γ(V−1))φ2
⊗,P(µ◦Fθ,P(V f1⊗V f2))(1V ⊗Γ(V )).

Moreover, the product of n-twisted fields φ⊗,X ( f1), . . . ,φ⊗,X ( fn) is given by unitary equivalence as

φ⊗,X ( f1) · · ·φ⊗,X ( fn) = (1V ⊗Γ(V−1))φn
⊗,P(µ◦Fθ,P(V f1⊗·· ·⊗V fn))(1V ⊗Γ(V )).

Proof. The products simply follow by the virtue of Equation (21) and by the fact that the operator V is
unitary.

One question still remains unsettled. How far do the twisted fields φ⊗,X ( f ) correspond to the twisting
deformation framework? In particular if the operators generating the twist (22) are unitary equivalent
to the momentum operator, do the fields φ⊗,X ( f ) represent the correct twisted field according to the
deformation chosen? Hence, we take the unitarily transformed twist operator and calculate the non-
commutative space-time. Next we calculate the product of two such twisted fields. Does this product
correspond to the formula given in Equation (23)? These questions can be partially answered and are
investigated by looking at simple examples.
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Example Let the unitary operator Γ(V ) be given by the Lorentz-transformation U(Λ). Then the
twisted field φ⊗,X ( f ) is given by

φ⊗,X ( f ) = (1V ⊗V−1)
∫

dnµ(k)
(

eikx̂⊗ f−(ΛT k)a(k)+h.c.
)
(1V ⊗V )

=
∫

dnµ(k)
(

eikx̂⊗ f−(ΛT k)a(ΛT k)+h.c.
)

=
∫

dnµ(k)
(

eik(ΛT x̂)⊗ f−(k)a(k)+h.c.
)
,

where in the last lines we used the explicit result of the adjoint action of U(Λ) on the particle operators,
the representation of the field in V ⊗H (see Equation (18)) and the Lorentz-invariance of the measure.
To compare this result with the twisted field obtained by deforming with the unitarily transformed twist,
we have to rewrite the coordinate operators. It can be easily done in this simple case, since the new
coordinate operators are simply x̂′ := Λ

T x̂ with the following commutation relations,

[x̂′µ, x̂
′
ν] =−2i

(
Λ

T
θΛ
)

µν
.

These are on the other hand the expected commutator relations of the coordinate operators that
correspond to a NC space-time generated by the Lorentz-transformed twist. It is as well clear that a
translation of the deformed field will not be noticed on since the operators U(x)U(Λ)−1PU(Λ)U(x)−1

and U(Λ)−1PU(Λ) generate the same constant NC space-time.

In the next example we choose to work in the massless case, i.e. with the Lorentz-invariant measure
dnµ(p) := dnp(2|p|)−1.

Example In the case of massless scalar fields we have an essentially self-adjoint operator D and
therefore a strongly continuous one parameter group Γ(V ) = eibD. Then the twisted field φ⊗,X ( f ) is
given by

φ⊗,X ( f ) =
∫

dnµ(k)
(

eik(e−b x̂)⊗ f−(k)a(k)+h.c.
)
.

As before, we compare the result with the twisted field obtained by deforming with the unitarily
transformed twist. Hence, we rewrite the coordinate operators as before, i.e. x̂′ := e−bx̂ with the
following commutation relations,

[x̂′µ, x̂
′
ν] =−2ie−2b

θµν.

These are on the other hand the expected commutator relations of the coordinate operators that
correspond to a NC space-time generated by the scale-transformed twist. It is again clear that a
translation of the deformed field will not be noticed since the operators Γ(V−1)PΓ(V ) generate a
constant NC space-time. Since the NC space-time is constant it does not need to be translated with
regards to the Poincaré transformed fields.

However, not all unitary transformations are as simple as the Lorentz-transformations or dilatations and
thus it remains unclear to what extent the field φ⊗,X ( f ) corresponds to the respective twist deformation.
This question shall be attacked more viciously in the context of algebraic QFT by the deformation of
massless fields.
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VI | CONCLUSION AND OUTLOOK

In this paper we established the existence of a broad class of deformations that result in wedge-locality
and non-trivial two-particle scattering. Moreover, a new light was shed on the Poincaré transformational
behavior of the deformed fields that correspond to fields living on a NC space-time. In fact it is required
to incooperate the transformation into the quantized space-time.

A connection between the newly deformed fields and the scalar fields obtained by twist deforma-
tion was established as well. The connection is given by an explicit isomorphism. However, it is
not clear if our fields defined on the tensor product space V ⊗H correspond to fields obtained by a
twist deformation, other than the constant cases, i.e. Γ(V ) = U(Λ) or Γ(V ) = eibD. To prove such
an isomorphism we can extend the operator ṼX ,ξ to (Ũ ⊗Γ(V−1))VP,ξΓ(V ) and construct an explicit
operator Ũ . This will have to be studied with specific cases in order to be able to achieve a generaliza-
tion for arbitrary V . Therefore, one should examine this isomorphism more thoroughly in the case of
the massless field. The reason therein lies in the multiplicity of well studied unitary operators in the
massless case that leave the wedge covariant. In particular, the conformal group provides a huge class
of unitary operators for the investigation of the isomorphism to NC space-times.

The deformation was achieved with operators that are unitarily equivalent to the momentum op-
erator. This may seem to be a restriction on the operators used for deformation. However, this is not
very restrictive since by using the spectral theorem (Taylor, 2012, Chapter 8, Corollary 1.6) every set
of commuting self-adjoint operators can be represented by a unitary equivalence to the momentum
operator.
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