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In this manuscript, we present the variational derivation of Maxwell’s
equations by means of the variational bi-complex. We use this exercise to
introduce the reader to the formulation of geometric variational problems
and their implementation in a Computer Algebra System.

En este trabajo presentamos la derivación variacional de las ecuacio-
nes de Maxwell por medio del bi-complejo variacional. Usamos este
ejercicio para introducir al lector a la formulación geométrica de pro-
blemas variacionales y su implementación en un Sistema de Algebra
Computacional.
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I | THE VECTOR FORMULATION OF MAXWELL FIELD EQUATIONS

Electromagnetism is perhaps the first encounter a student has with a classical field theory. Its empirical
evidence lies on the fact that in nature there is a distinguished property of matter that some objects
posses and which we call electric charge. Such property is observed to be conserved and it can be
quantified in terms of a dynamical law. Accordingly, from the dynamical law we infer the existence of
a field responsible for the inertial change of the charges and, in turn, as charges move around a new
field configuration arises. Thus, the field itself obeys a dynamical law of its own which is linked to the
dynamics of the charges in space.
Historically, the above picture was developed through a set of independent observations about the work
done by the fields on test charges and currents, and the fluxes across known surfaces. Recall that the
definition of the work done by a vector field ~X along a curve γ is

εγ(~X)≡
∫

γ

~X ·d`, (1)
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THE VARIATIONAL BI-COMPLEX FORMULATION OF MAXWELL’S EQUATIONS

whilst the flux of a vector field ~X across a given surface Σ is

ΦΣ(~X)≡
∫

Σ

~X ·ds. (2)

The field ~X is said to be conservative if the work done (1) is path independent or, equivalently, if the
work done along any closed path is identically zero. Thus, in its original form, electromagnetism was
formulated in terms of global relations between the fields and their sources, namely∮

∂Ω

~B ·ds = 0 [Magnetic Gauss’ Law], (3)∮
∂Σ

~E ·d`=− d
dt

∫
Σ

~B ·ds [Faraday’s Law], (4)∮
∂Ω

~D ·ds =
∫

Ω

ρextdv [Electric Gauss’ Law ] and (5)∮
∂Σ

~H ·d`= d
dt

∫
Σ

~D ·ds+
∫

Σ

~jext ·ds [Maxwell-Ampere’s Law]. (6)

There are a number of symbols that require a proper introduction. Firstly, note that we have arranged
things so that in the left hand side (lhs) of each equation there is only a closed integral alternating
between surface and contour. Such alternation is not accidental, since the order is disposed in terms
of the fields involved. Thus, the first two equations link the magnetic flux ~B with the electric field ~E,
whilst the latter group links the electric flux ~D, the magnetic field ~H and the external sources of the
fields: the electric charge density ρext and current flux ~jext.
Equations (3 - 6) reveal the geometric nature of each constituent of the theory and allows us to correctly
identify fields and fluxes. Note that neither of the fields ~E or ~H are conservative! This is the key
principle for the energy conversion process driving our modern society. In the case of a closed path, a
better name for the integral (1) is circulation. Thus, in our discussion the relevant quantities are the
fluxes of B and D and the circulations of E and H. This will be the simple motivation for introducing
differential forms in the next section.
The passing from the global representation to the local expressions of Maxwell’s equations is a
straightforward application of the vector calculus integral theorems.Thus, (3-6) become

∇ ·~B = 0, (7)

∇×~E =− ∂

∂t
~B, (8)

∇ ·~D = ρext (9)

and

∇× ~H =
∂

∂t
~D+~jext (10)

Note that an immediate consequence of this local form is a continuity equation for the sources. That is,
applying the divergence operator and substituting (9) into (10) it follows that

∂

∂t
ρext +∇ ·~jext = 0. (11)

In this local form, we can formulate the following problem: assuming the external sources ρext and jext
to be known functions of space and time, determine the fields ~E and ~B. As it stands, such problem is
not properly formulated as there is no link between the sources and the fields. Therefore, one must
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THE VARIATIONAL BI-COMPLEX FORMULATION OF MAXWELL’S EQUATIONS

supply an additional set of constitutive relations which generically can be written as

~D = ~D(~E,~B) and ~H = ~H(~E,~B). (12)

For simplicity, we will only consider the case where the above dependence is restricted to single fields

~D = ~D(~E) and ~H = ~H(~B). (13)

A priori, the functions (13) are unknown. However, we can assume that they are smooth and make a
formal series expansion

~D(~E) = ~D0 +
∂~D
∂~E

∣∣∣∣∣
~E=0

~E + · · · and ~H(~B) = ~H0 +
∂~H
∂~B

∣∣∣∣∣
~B=0

~B+ · · · . (14)

Truncating the series at linear order, the most general linear spacetime relations are written as

~D(t,x) =
∫

∞

−∞

∫
Ω

ε̄(t, t ′;x,x′)~E(t ′,x′)dx′dt ′ and (15)

~H(t,x) =
∫

∞

−∞

∫
Ω

µ̄−1(t, t ′;x,x′)~B(t ′,x′)dx′dt ′. (16)

Here ε̄ and µ̄ are second rank, symmetric tensor densities characterising the response of a medium to
the externally applied fields ~E and ~B. In this form, we can interpret the fields ~D and ~H as averaged
quantities over the medium. Thus, we can refer to ~E and ~B as the primary fields whilst ~D and ~H as the
secondary fields.
Equations (15) and (16) allow us to define a local, homogeneous and isotropic media as those whose
responses are given by

~D(t,x) =
∫

∞

−∞

∫
Ω

ε δ(t− t ′;x− x′)~E(t ′,x′)dt ′dx′ = ε~E(t,x) and (17)

~H(t,x) =
∫

∞

−∞

∫
Ω

µ−1
δ(t− t ′;x− x′)~B(t ′,x′)dt ′dx′ =

1
µ
~B(t,x), (18)

where now ε and µ have become mere scalars. These are the simplest and most used forms for the
electromagnetic constitutive relations. Note that, as they stand, they are very restrictive, we have made
explicit each assumption leading to them.
Finally, equipped with the constitutive relations (17) and (18) let us tackle the problem stated earlier.
Our aim is to obtain the fields ~E and ~B in terms of the external sources ρext and ~jext. Let us begin by
noting that the six components of the fields ~E and ~B can be obtained in terms of four functions, the
three components of the magnetic vector potential A and the scalar electric potential φ. Thus, from
equations (7) and (8) it follows that

~B = ∇×~A and ~E =−∇φ− ∂

∂t
~A. (19)

Using the constitutive relations (17) and (18) and substituting (19) into (9) and (10) we obtain a set
of four coupled, linear, inhomogenous partial differential equations for the components of ~A and φ,
namely

∇×∇×~A+µε
∂2

∂t2
~A+∇

[
µε

∂

∂t
φ

]
= µ~jext and (20)

∇ ·∇φ+
∂

∂t

[
∇ ·~A

]
=−ρext

ε
. (21)
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THE VARIATIONAL BI-COMPLEX FORMULATION OF MAXWELL’S EQUATIONS

Space Notation Dimension Coordinate basis

0-forms Ω
0
M 1 {1}

1-forms Ω
1
M 4 {dx,dy,dz,dt}

2-forms Ω
2
M 6 {dx∧dy,dy∧dz,dz∧dx,dx∧dt,dy∧dt,dz,∧dt}

3-forms Ω
3
M 4 {dx∧dy∧dz,dx∧dy∧dt,dx∧dt ∧dz,dt ∧dy∧dz}

4-forms Ω
4
M 1 {dx∧dy∧dz∧dt}

Tabla 1: Spaces of p-forms over a four dimensional space M

We can decouple this system by noting an extra freedom implicit in the definition of the potentials A
and φ – equation (19) – that is, defining a new set of potentials

~A′ = ~A+∇ψ and φ
′ = φ− ∂

∂t
ψ, (22)

where ψ is a differentiable scalar function, the same fields ~E and ~B are obtained. Therefore, substituting
(51) into (20) and (21) and using the gauge condition

∇
2
ψ−µε

∂2

∂t2 ψ = 0, (23)

one obtains the decoupled system of hyperbolic equations

∇
2~A−µε

∂2

∂t2
~A =−µ~jext and (24)

∇
2
φ−µε

∂2

∂t2 φ =−ρext

ε
, (25)

which – together with a set of suitable boundary and initial conditions – allow us to uniquely determine
the fields ~E and ~B in terms of the sources ρext and ~jext.

II | A GEOMETRIC FORMULATION OF ELECTROMAGNETISM

Electromagnetism can be formulated in modern geometric terms through the calculus of differential
forms. There are numerous introductory texts to such geometric formalism (see (1; 2; 3; 4)). We urge
the reader to explore text by Baldomir and Hammond (5) and the one by Gross and Kotiuga (6) for
a thorough presentation of electromagnetism in such terms. Here, we shall re-write all of the content
in the previous section in the differential form language so that the unfamiliar reader obtains a short
dictionary for translating electromagnetism to geometry.
Roughly, in an n-dimensional space M , a differential p-form (0≤ p≤ n) is the argument of an integral
over a p-dimensional domain. In this sense a 1-form is the argument of a line integral, a 2-form is the
argument of a surface integral, and so forth. By definition a 0-form will simply be a scalar function.
Algebraically, differential forms are totally antisymmetric multilinear maps acting on vector fields
defined over the space M . For each p they form a vector space denoted by Ω

p
M . In the present work, we

will assume that the space M is four dimensional, accounting for three spatial and one time directions.
Thus, over such a four dimensional space, we can accommodate these vector spaces as described in
table 1.
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In this sense, equations (1) and (2) are written as∫
γ

~X ·d`=
∫

γ

(Xxdx+Xydy+Xzdz) =
∫

γ

α and (26)∫
Σ

~X ·ds =
∫

Σ

(Xzdx∧dy+Xydz∧dx+Xxdy∧dz) =
∫

Σ

β, (27)

with

α≡ Xxdx+Xydy+Xzdz ∈Ω
1
M (28)

and

β≡ Xzdx∧dy+Xydz∧dx+Xxdy∧dz

= βxydx∧dy+βzxdz∧dx+βyzdy∧dz

= ∑
i 6= j

βi j dxi∧dx j ∈Ω
2
M , (29)

where

βi j = ~X · ê(k). (30)

The global expressions for Maxwell’s equations can be summarised as∮
∂Σ(3)

F = 0 and (31)∮
∂Σ(3)

G =
∫

Σ(3)
j, (32)

where Σ
(3) ⊂M is a three dimensional domain with boundary ∂Σ

(3); and the fields F,G ∈Ω
2
M and the

source j ∈Ω
3
M are defined as

F =
3

∑
i=1

Ei dxi∧dt +∑
i 6= j

Bi j dxi∧dx j, (33)

G =
3

∑
i=1

Hi dxi∧dt +∑
i 6= j

Di j dxi∧dx j and (34)

j = ρextdx∧dy∧dz+∑
i 6= j

ji jdxi∧dx j ∧dt (35)

where, as in (30), the components of the fluxes are given by

Bi j = ~B · ê(k) Di j = ~D · ê(k) and ji j = ~jext · ê(k). (36)

Again, the passing to from the global to the local form is a direct application of Stokes’ Theorem,∮
∂Σ(3)

F =
∫

Σ(3)
dF, (37)

and equations (31) and (32) become

dF = 0 and dG = j. (38)

These are the geometric expressions for Maxwell’s equations. From the algebraic definition of the
exterior derivative operator, one can easily obtain the partial differential equations for each of the fields
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~E, ~B, ~D and ~H, equations (7) - (10). Moreover, noting that the exterior derivative is a nilpotent operator,
i.e. d2 = d◦d = 0, charge conservation [c.f. equation (11)] is simply a geometric identity, namely

d j = d [dG] = d2G = 0. (39)

As before, we would like to obtain the field F in terms of the sources j. However, again, the sources are
related to G but not to F . In order to correctly pose the problem, an additional link between G and F
must be provided. Similarly, we will restrict our analysis to the most general linear expression of G in
terms of F , that is, G is a convolution of F

G(p) =
∫

Ω

χ(p, p′)F(p′), (40)

where χ : T
(

0
2

)
M −→ T

(
0
2

)
M is a linear map called the constitutive tensor defining the response

of the medium where F propagates.
In components, the constitutive tensor can be written as

χ
cd

ab = εabe f κ
e f cd , (41)

where εabe f is the totally anti-symmetric Levi-Civita symbol and the indices of κ
e f cd share some of the

symmetries of a curvature tensor (7; 8). This is suggestive of a metric theory and, indeed, the simplest
local constitutive relation [cf. equations (17) and (18)] is written as

G = κ̃?g F, (42)

where ?g : Ω
p
M −→Ω

n−p
M denotes the Hodge dual operator associated with a metric tensor defined over

M [c.f. the pairing of dimensions in Table 1] and κ̃ =
√

ε/µ. Notice that, up to this point, it was not
necessary to assume that the manifold M was equipped with a metric tensor g. The similarity of the
constitutive tensor with the curvature of a Riemannian manifold served as a motivation to introduce such
structure. Thus, the metricity assumption is made in addition to Maxwell’s equations (38) and it plays
a central role in the study of the symmetries of electromagnetic theory. Furthermore, the hyperbolic
nature of the system of differential equations (24) and (25), stemming from the sign arrangement in (7)
- (10), imposes an indefinite Lorentzian signature on g.
Continuing with our translation into geometric language, the homogeneous Maxwell equation, dF = 0,
implies the local existence of a class of potential 1-forms A such that

F = dA = d [A+dψ] with ψ : M −→ R. (43)

Shortly we will deal with the scalar function (0-form) ψ. For the moment, it is easy to verify that

A = φ dt +
3

∑
i=1

Ai dxi ∈Ω
1
M , (44)

yields the correct components [c.f. equation (19)] of the field form (33). Thus, using the constitutive
relation (42) and the definition F in terms of the potential 1-form A, equation (43), and substituting
into the inhomogeneous Maxwell’s equations it follows that

dG = d [κ̃?g F ] = κ̃ d [?gdA] = j ∈Ω
3
M , (45)

or, equivalently, its dual equation

κ̃ ?g d?g dA = ?g j ∈Ω
1
M . (46)
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In a four dimensional (pseudo)Riemannian manifold (M,g), the co-differential, δ : Ω
p
M −→Ω

p−1
M , and

the Laplace-deRham operator, ∆ : Ω
p
M −→Ω

p
M are defined as

δ≡ ?gd?g and ∆≡ dδ+δd. (47)

Thus, we can rewrite equation (46) as

κ̃δdA = κ̃(∆A−dδA) = ?g j. (48)

Notice that this equation does not depend on the representing member of the class of 1-form potentials,
namely

∆A′−dδA′ = ∆A−dδA with A′ = A+dψ. (49)

As noted before, the 3-form j is a conserved current, that is, for any closed 3-hypersurface enclosing a
volume Ω we have

κ̃

∮
∂Ω

?g (∆A−dδA) =
∮

∂Ω

j =
∫

Ω

d j = 0. (50)

In the case where the potential 1-form in the class is chosen so that the function ψ satsifies the condition

∆ψ = 0, (51)

it follows that δA = 0 and κ̃?g ∆A coincides exactly with the conserved current. In such case, Maxwell’s
equations are simply written as

κ̃?g ∆A = j. (52)

Equation (51) is the geometric expression for the gauge condition (23) and the system (52) is equivalent
to the pair of wave equations (24) and (25). Here, the Lorentzian signature of the metric tensor g
guarantees the hyperbolicity of the Laplace-deRham operator, as opposed to its elliptic nature in the
Riemannian case.

III | A SUMMARY OF THE VARIATIONAL BI-COMPLEX

In this section we take the next leap of abstraction in the formulation of Maxwell’s electromagnetism. In
section I we stated the empirical relations linking sources and fields and, through the aid of a constitutive
relation and using Stokes’ theorem, we obtained the local differential equations that one solves to
obtain the fields in terms of the sources. When the equations of motion are empirically postulated it is
useful to know if there is a variational formulation for them, that is, to know if the equations of motion
are the conditions for stationary configurations of an action functional. This is the inverse problem
of the calculus of variations. In the past decades, this problem has been formulated in the elegant
framework of jet-bundles and the variational bi-complex (see (9)). The general idea is to use algebraic
techniques for inverting well defined maps, rather than the standard variations, to obtain – if it exists –
a Lagrangian density for a given set of equations of motion. In the present manuscript, we consider the
standard problem to illustrate how the construction works. This section is based largely on the notes by
Ian Anderson (9) and on the text by Peter Olver (10).
In the following, we shall construct various complexes. The vector calculus electromagnetic complex is

0−→CR3
∇−→ VectR3

∇×−→ VectR3
∇·−→CR3 −→ 0, (53)

REF-UNAH / Vol. 6 - No. 1 / 92 - 101



THE VARIATIONAL BI-COMPLEX FORMULATION OF MAXWELL’S EQUATIONS

where for each map

im(∇) = ker(∇×) and im(∇×) = ker(∇·). (54)

These maps are globally defined over R3 and (54) is the fact that we used to reformulate Maxwell’s
equations in terms of the vector and scalar potentials ~A and φ.
In section II we relaxed the topological structure of the domain were the fields are defined and exhibit
the topological nature of Maxwell’s electromagnetic theory. This time, we worked on a four dimensional
differentiable manifold M with no other a priori structure defined on it. In this case, we can also
observe the complex

0−→Ω
0
M

d1−→Ω
1
M

d2−→Ω
2
M

d3−→Ω
3
M

d4−→Ω
4
M −→ 0. (55)

However, in this case

im(dp)⊆ ker(dp+1) (56)

Indicating us that the potential formulation is only locally valid.
Adding the constitutive relations, the electromagnetic sequence is

(57)
where A and A′ are defined locally, i.e. in an open neighborhood U around each point p ∈M .
Note that, in our case, the role of the metric is crucial, allowing us to complete the sequence by mapping
2-forms.
We can build a top form by combining the elements belonging to the different spaces in the complex

λ =
1
2

F ∧G+ j∧A =
1
2

κ̃(dA∧?gdA)+ j∧A. (58)

We observe that this top-form is a functional of the unknown components of the potential 1-form A and
the given sources, i.e. λ = λ(A,dA; j). In this exericise we have come to this conclusion. The variational
formulation of Maxwell’s equations consists in turning upside down our previous reasoining. That is,
assuming that we have a four dimensional differentiable manifold equipped with a pseudo-Riemannian
metric, i.e. considering the pair (M ,g); and a given closed 3-form j, find the 1-form A such that the
functional

S[A,Ω] =
∫

Ω

λ(A,dA; j) =
∫

Ω

[
1
2

κ̃(dA∧?gdA)+ j∧A
]
, (59)

takes an extreme value. In this variational field theory problem, we are assuming from the beginning
charge conservation by requiring that j be closed and, implicitly, the constitutive relation has to be
metric.
The variational bi-complex is an extension of the complex (55) which allows us to turn the variational
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problem stated above into another sequence. To this end, let us construct a fibre bundle1
π : E −→M

with base manifold (M ,g) and fibre F representing every possible value of the unknown functions
(the components of the 1-form A) may have. Thus, we see that

dim(E) = dim(M )+dim(F ). (60)

Thus, dim(E) = 4+4 = 8 since there are four unknowns we are looking for. Let us consider a local
section s : M −→ E, whose local coordinates are given by

s(x) : xa −→ [xa,Aα(xa)] with α = 1 . . .4, (61)

the k−th order jet space of E is a fibration

π
k : Jk(E)−→M (62)

whose local coordinates are naturally lifted as

ι
k(s)(x) =

[
xa,Aα(xa),Aα

i1 ,A
α
i1i2 . . .A

α
i1,...ik

]
, (63)

where ι
k(s) : M −→ Jk(E) is a section of Jk(E) and

Aα
i1...il ≡

∂l

∂x1∂x2 . . .∂xl Aα(xa) for l = 0 . . .k. (64)

In the theory of differential equations, one usually considers the infinite jet bundle J∞(E) consisting of
all the jets of every order. Such space has the structure of a differentiable manifold and, therefore, we
can consider the spaces of p-forms Ω

p [J∞(E)] defined on it.
In this setting, contact forms are defined as those whose action on horizontal vector fields of J∞(E)
vanish, that is, a differential form ω is a contact form if

[ι∞(s)]∗ω = 0, (65)

where [ι∞(s)]∗ : Ω [J∞(E)]−→Ω(M ) denotes the induced pull-back map.
Albeit abstract, contact forms are locally generated by

θ
α
i1...ik = dAα

i1...ik −Aα
i1...ikadxa. (66)

That is,

θ
α = dAα−Aα

i dxi, θ
α
i = dAα

i −Aα
i jdx j, θ

α
i j = dAα

i j−Ai jkdxk, . . . (67)

To see this, let us evaluate condition (65) for the fourth component of the potential 1-form A, that is

[ι∞(s)]∗ θ
4 = [ι∞(s)]∗

(
dA4−A4

i dxi)= dφ(xa)− ∂

∂xi φ(xa) dxi = 0, (68)

which is simply the definition of the exterior derivative of the scalar potential φ : M −→ R. However,
note that the vanishing of the left hand side of equation (68) only occurs when restricted to M . In
general, Aα and Aα

i denote independent coordinates in the jet space J∞(E) which can vary freely.
Understanding and appreciating this fact is the essence of William Burke’s dedication of his book (2).
Following Anderson (9), let us introduce a new type of forms on the jet space. We will say a form
ω ∈Ω

p [J∞(E)] is of type (r,s) if its action on p vector fields

ω(X(1), . . . ,X(p)) = 0 (69)

1See the text by Nash and Zen for an introduction to the theory of fibre bundles (11) or the foundational book by Kobayashi and Nomizu (12) for a formal and complete
approach
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whenever more than s of the vectors are vertical, or more than r of the vectors annihilate all the contact
1-forms. Thus, we can decompose Ω

p [J∞(E)], the space of p-forms over the infinite jet, into two
independent classes, namely, horizontal and vertical forms. Horizontal forms correspond to the usual
generators of the cotangent bundle of M , while vertical ones are all the contact forms such that

Ω
p [J∞(E)] =

⊕
r+s=p

Ω
r,s [J∞(E)] , (70)

where Ω
r,s [J∞(E)] is denotes the space of forms of type (r,s) on the jet.

Now, the exterior derivative operator defined over the jet space splits into two parts, d = dH +dV , where

dH : Ω
r,s [J∞(E)]−→Ω

r+1,s [J∞(E)] and (71)

dV : Ω
r,s [J∞(E)]−→Ω

r,s+1 [J∞(E)] . (72)

To see the coordinate expression of the operators (71) and (72), let us consider a function f : J∞(E)−→
R written as f = f (xa,Aα,Aα

i ,A
α
i j, . . .), the horizontal derivative of f is expressed as

dH f =

[
∂

∂xi +Aα
i

∂

∂Aα
+Aα

i j
∂

∂Aα
j
+ . . .

]
( f )dxi = Di( f )dxi, (73)

while the vertical is

dV f =
∂ f

∂Aα
θ

α +
∂ f

∂Aα
i

θ
α
i + . . . (74)

In this construction, we can see that motions in the vertical directions can be interpreted as the
usual variations of the potentials in the calculus of variations. Here, those are simply vertical exterior
derivatives. Thus, in a four dimensional manifold M , we can depict the variational bi-complex as a
vertical extension of the de Rham complex (55) of the form

(75)

Note that the decomposition (70) of Ω
p [J∞(E)] corresponds to the various diagonals of the variational

bi-complex (??).
The electromagnetic top form (58) can be promoted to an element of λ̃ ∈Ω

4,0 [J∞(E)] and we can write
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the action functional (59) as

S [λ,Ω] =
∫

Ω

[ι∞(s)]∗ (λ̃) =
∫

Ω

λ(A,dA; j)

=
∫

Ω

L
[

Aα(xa),
∂

∂xb Aα(xa); j(xa)

]
dx1∧dx2∧dx3∧dx4. (76)

We will refer to the form λ̃ as the electromagnetic Lagrangian, where the components and derivatives
of the potential 1-form A are free variables.
Thus far this construction has been very abstract, demanding a huge amount of differential equations
theory to tackle a seemingly standard problem. Here comes the conceptual advantage of the construction
of the variational bi-complex. Taking exterior derivatives is a simple algebraic exercise and, for any
Lagrangian Ω

n,0 [J∞(E)], its vertical exterior derivative is

dV λ̃ = E(λ̃)+dHη for some η ∈Ω
n−1,1 [J∞(E)] , (77)

where E denotes the Euler-Lagrange operator defined as

E(λ̃) =
dim(F )

∑
α=1

Eα(L)θα∧dx1∧·· ·∧dxn ∈Ω
(n,1) [J∞(E)] . (78)

In the present case, the components of the Euler-Lagrange operator are simply

Eα(L) =
[

∂

∂Aα
−Di

∂

∂Aα
i

]
L (79)

which are the usual field theory Euler-Lagrange equations.
Notice, however, that our geometric Lagrangian input is the form λ̃, and not directly the function L. In
this sense, our equations of motion have to be obtained from (77), i.e.

E(λ̃) = dV λ̃−dHη. (80)

We need to eliminate the exact horizontal form dHη. This is usually done through integration by parts
and demanding that the filed variations vanish in the boundary. In the geometric setting this is achieved
by introducing a co-augmentation map

I : Ω
n,s [J∞(E)]−→Ω

n,s [J∞(E)] , (81)

such that

I(dHη) = 0 for any η ∈Ω
n−1,1 [J∞(E)] , (82)

any horizontal top form ω ∈Ω
n,s [J∞(E)] can be written as

ω = I(ω)+dHη (83)

and I can be seen as a projector, that is

I2 = I. (84)

Therefore, the Euler-Lagrange equations for a given Lagrangian form λ̃ are written as the vanishing of
the Euler-Lagrange operator, i.e.

E(λ̃) = I(dV λ̃−dHη) = I(dV λ̃) = 0. (85)
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IV | DERIVING MAXWELL EQUATIONS THROUGH THE VARIATIONAL
BI-COMPLEX

In this section we present the use of the variational bi-complex in deriving Maxwell equations using
the computer algebra system Maple™ together with its built-in DifferentialGeometry, Tensor and
JetCalculus libraries (see (13)). Some familiarity with the Maple™ language is assumed. Also, we
encourage the reader to explore the very well written documentation of these libraries. We will break
the script into a preamble, definition of geometric objects and the calculation using the variational
bi-complex.

1 | Preamble

Firstly we restart the Maple™ kernel by
> restart:

We need to call the libraries we will use through our calculation, define the independent and dependent
variables. Since we want to have certain freedom on the dimension of the base the base manifold M we
will count the number of independent variables through the nops command. The dependent variables
will be included into an array for ease of further manipulation from the very beginning. Note the use
of sequences, concatenations and counters. This is a very convenient way to generate variables in a
generic code
> with(DifferentialGeometry); with(Tensor); with(Tools); with(JetCalculus); with(PDEtools)

> Preferences("TensorDisplay", 1); Preferences("PrettyPrint", false); Preferences("JetNotation",

"JetNotation1")

> vars := [x, y, z, t]; n := nops(vars)

> A__def := [seq(cat(A__, i), i = 1 .. n-1), phi]

Now we have all the ingredients to define the jet space. To this end, we will construct J2(E) using
the DGsetup calling of the DifferentialGeometry library. The first argument corresponds to the base
manifold coordinates, the second to the fibre coordinates, the third is the name of the space, the fourth
is the order of the jet space and, finally, verbose prints the protected variables for the rest of the script:
> DGsetup(vars, A__def, Maxwell, 2, verbose)

‘The following coordinates have been protected:‘

[x, y, z, t, A__1[], A__2[], A__3[], phi[], A__1[1], A__1[2], . . . , A__3[4, 4], phi[1, 1], phi[1, 2], phi[1,
3], phi[1, 4], phi[2, 2], phi[2, 3], phi[2, 4], phi[3, 3], phi[3, 4], phi[4, 4]]

‘The following vector fields have been defined and protected:‘

[D_x,D_y,D_z,D_t,D_A__1[],. . . ,D_ phi[3, 4]]

‘The following differential 1-forms have been defined and protected:‘

[dx, dy, dz, dt, dA__1[], dA__2[], . . . ,dphi[4, 4]]
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‘The following type [1,0] biforms have been defined and protected::‘

[Dx, Dy, Dz, Dt]

‘The following type [0,1] biforms (contact 1-forms) have been defined and protected::‘

[CA__1[], CA__2[], . . . , Cphi[4, 4]]

‘frame name: Maxwell‘

Maple™ denotes with a capital D the basis vectors of for the tangent bundle of the base manifold M ,

e.g. D_x =
∂

∂x
, but it uses a similar notation for Ω

1,0 [J∞(E)], e.g. Dx. Contact forms are denoted with

a C, e.g. CA__1[] = dA1−A1
i dxi. Finally, notice that this simple lines has generated a basis for each of

the spaces in the three bottom rows of the variational bi-complex (??).
The amount of locked variables is sufficiently large and their syntax quite elaborate. Thus, it will be
convenient to ‘bundle’ all this information into various arrays. This will greatly simplify the rest of the
script. To this end, we will use the DGinfo command, contained in the Tools library
> dQ := DGinfo("FrameBaseForms"): DQ := DGinfo("FrameBaseVectors"):

> dX := DGinfo(Maxwell, "FrameHorizontalBiforms"):

Since we are considering the base as the spacetime pseudo-Riemannian manifold (M ,g) and we will use
standard units, some care must be taken with speed of light c pre-factors for the time components of the
metric. Thus, we redefine the 4th component using the evalDG command of the DifferentialGeometry
library, telling Maple™ that we are defining a geometric quantity
> dQ[n] := evalDG(c*dQ[n]); DQ[n] := evalDG(DQ[n]/c); dX[n] := evalDG(c*dX[n])

Finally, we will generate an array containing all the base 2 and 3-forms
> TwoForm := GenerateForms(dQ, 2); ThreeForm := GenerateForms(dQ, 3):

2 | Geometric setting: metric, potential and current

Now we can start with the construction of Maxwell’s electromagnetic theory. We start this exercise by
assuming that the base manifold M is equipped with a pseudo-Riemannian metric. We are free to use
any metric tensor for M . For simplicity, we will assume a Minkowski spacetime
> g := evalDG(sum(‘t‘(dQ[i], dQ[i]), i = 1 .. n-1)-‘t‘(dQ[n], dQ[n]));

> g__inv := InverseMetric(g):

g := dx⊗dx+dy⊗dy+dz⊗dz− c2dt⊗dt

Here, ‘t‘ indicates tensor product.
The potential 1-form is built as an element of Ω

1,0 [J∞(E)]
> A__comp := [A__1[], A__2[], A__3[], phi[]]

> A := evalDG(sum(A__comp[i]*dX[i], i = 1 .. n-1)-A__comp[n]*dX[n]/c)
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A := A1[ ]Dx+A2[ ]Dy+A3[ ]Dz−φ[ ]Dt

Here, the minus sign before the scalar potential is explicitly used so that the sign convention in the
electric field expression in (19) is satisfied (c.f. the components of F , below).
The current 3-form is defined as
> j__comp := [j__1(vars), j__2(vars), j__3(vars), rho(vars)]

> j__s := evalDG(TwoForm[1]*j__comp[3]-TwoForm[2]*j__comp[2]+TwoForm[4]*j__comp[1])

> rho__v := evalDG(j__comp[n]*ThreeForm[1])

> j := convert(evalDG(-I*(rho__v-‘w‘(j__s/c, dQ[n]))), DGbiform)[n]

j :=−IρDx∧Dy∧Dz+ I j3Dx∧Dy∧Dt− I j2Dx∧Dz∧Dt + I j1Dy∧Dz∧Dt

Note that we first build the 3-form (35), whose components are functions of the independent variables,
and then we use the convert command with the argument DGbiform to turn it into an element of
Ω

3,0 [J∞(E)]. This is all the input of the problem.

3 | Exterior derivatives and Hodge star: fields and constitutive relation

The field form F is simply the horizontal exterior derivative of the potential (1,0)-form A, defined
above
> F := HorizontalExteriorDerivative(A)

F :=−(A21 +A12)Dx∧Dy− (A31 +A13)Dx∧Dz− (−A32 +A23)Dy∧Dz− (φ1 +A14)Dx∧Dt−
(φ2 +A24)Dy∧Dt− (φ3 +A34)Dz∧Dt

Compare with the definition of the 2-form F in terms of the components of the fields ~E and ~B, equation
(33), and their corresponding expressions in terms of the vector and scalar potentials, equation (19).
Here we will make the assumption of the metric constitutive relation (42). However, the field form
defined above is a (2,0)-form. In order to perform the calculation we turn F into a 2-form over (M ,g),
apply the Hodge dual operator and turn the result back into a (2,0)-form
> G := convert(simplify(HodgeStar(g, convert(sqrt(epsilon/mu)*F, DGform)), symbolic), DGbiform)[3]

These are all the geometric objects we need for our variational problem.

4 | Field Equations

To obtain the required field equations, we need to construct the (4,0)-form (58). Here, due to the
signature of the metric, we use a purely imaginary Lagrangian form
> lambda := evalDG(I*((1/2)*‘w‘(F, G)+‘w‘(j, A)))

Since we already defined the field (2,0)-forms in terms of the potential, the output of this code line is
the explicit form of the function L in (76).
Finally, the field equations are written simply as the vanishing of each component of the Euler-Lagrange
operator applied to the (4,0)-form λ, above. Thus, using the expression for E(λ̃), equation (85), we
have
> simplify(IntegrationByParts(VerticalExteriorDerivative(lambda)), size)
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−1
√

µc
(− j1c

√
µ+((A12,2 +A13,3 −A21,2 −A31,3)c

2−φ1,4−A14,4)
√

ε)Dx∧Dy∧Dz∧Dt ∧CA1[ ]+

1
√

µc
( j2c
√

µ+((A11,2 −A21,1 −A23,3 +A32,3)c
2 +φ2,4 +A24,4)

√
ε)Dx∧Dy∧Dz∧Dt ∧CA2[ ]+

1
√

µc
( j3c
√

µ+((A11,3 +A22,3 −A31,1 −A32,2)c
2 +φ3,4 +A34,4)

√
ε)Dx∧Dy∧Dz∧Dt ∧CA3[ ]−

1
√

µc
(ρc
√

µ− (φ1,1 +φ2,2 +φ3,3 +A11,4 +A22,4 +A33,4)
√

ε)Dx∧Dy∧Dz∧Dt ∧Cphi[ ]

which, using the fact that c2 = εµ, we observe that we have recovered the coupled Maxwell equations
for the vector and scalar potentials ~A and φ [c.f. equations (20) and (21)], respectively. This completes
our task of obtaining Maxwell Field Equations from an action principle using the variational bi-complex.
It is a programing exercise to implement the gauge condition to decouple the equations and recover
(24) and (25), i.e. equation (52).

V | CLOSING REMARKS

In this manuscript we have gone from the empirically obtained Maxwell integral relations, to their local
vector calculus formulation. We have recalled the origin of the constitutive relations and use the simplest
class to close the field theory problem, namely, given the sources obtain the fields. Then, we note that
the homogeneous vector equations are mere geometric identities which allows us to express the fields
~E and ~B in terms of potentials. Finally, we closed the first section with the standard wave equations
for the potentials. Then, in Section II, we carried out the same analysis in the geometric setting of
differentiable manifolds, differential forms and we have introduce the metric tensor as an ingredient to
express the constitutive relation. We tried to follow the same reasoning so that the unfamiliar reader can
use such section as a dictionary between the vector and the geometric formulation of Maxwell’s theory.
In Section III, motivated by the topological sequences of the nabla and exterior derivative operators,
we sketched the construction of the variational bi-complex used to geometrise the standard calculus
of variations. Finally, in spite of the abstract formulation of the Euler-Lagrange equations in terms of
vertical exterior derivatives and an integration by parts operator, we presented a simple Maple™ script
to directly obtain Maxwell’s equations in terms of the components of the magnetic vector and electric
scalar potentials. In writing the Maple™ script, we have highlighted explicitly the places where our
assumptions about the construction of the theory were made. Thus, it is our hope that the reader can
modify and play with those, wether increasing the number of dimensions, or changing the metric tensor,
or the constitutive relations, or relaxing these assumptions altogether and explore how far can she go.

| REFERENCIAS

Mikio Nakahara. Geometry, topology and physics. CRC Press, 2003.
William L Burke and William L Burke. Applied differential geometry. Cambridge University Press, 1985.
Michael Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced calculus. CRC
Press, 2018.
Harley Flanders. Differential Forms with Applications to the Physical Sciences by Harley Flanders, volume 11.
Elsevier, 1963.
Daniel Baldomir and Percy Hammond. Geometry of electromagnetic systems. Clarendon press, 1996.
Paul Wolfgang Gross and P Robert Kotiuga. Electromagnetic theory and computation: a topological approach,
volume 48. Cambridge University Press, 2004.
Friedrich W Hehl and Yuri N Obukhov. Foundations of classical electrodynamics: Charge, flux, and metric,
volume 33. Springer Science & Business Media, 2012.

REF-UNAH / Vol. 6 - No. 1 / 100 - 101



THE VARIATIONAL BI-COMPLEX FORMULATION OF MAXWELL’S EQUATIONS

Felipe A Asenjo, Cristián Erices, Andrés Gomberoff, Sergio A Hojman, and Alejandra Montecinos. Differential
geometry approach to asymmetric transmission of light. Optics express, 25(22):26405–26416, 2017.
Ian M Anderson. Introduction to the variational bicomplex. 1992.
Peter J Olver. Applications of Lie groups to differential equations, volume 107. Springer Science & Business
Media, 2000.
Charles Nash and Siddhartha Sen. Topology and geometry for physicists. Elsevier, 1988.
Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry, volume 1. Interscience
publishers New York, 1963.
Ian M Anderson and Charles G Torre. New symbolic tools for differential geometry, gravitation, and field theory.
Journal of Mathematical Physics, 53(1):013511, 2012.

REF-UNAH / Vol. 6 - No. 1 / 101 - 101


	The vector formulation of Maxwell field equations
	A geometric formulation of electromagnetism
	A summary of the variational bi-complex
	Deriving Maxwell equations through the variational bi-complex
	Preamble
	Geometric setting: metric, potential and current
	Exterior derivatives and Hodge star: fields and constitutive relation
	Field Equations

	Closing remarks

