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Todos los caminos llevan a la condición de cuantización de Dirac

All roads lead to the Dirac quantization condition
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The existence of magnetic monopoles is a sufficient argument to explain
the quantization of electric charge, an argument that was presented by
Dirac. Regardless of the status of any search for magnetic monopoles,
the formal description of the quantum mechanics of a charged particle
in the field of a magnetic monopole is very rich and has increased our
understanding of the mathematical structures underlying this description,
as well as of its physical implications. In this short review, we present
four different arguments all leading to the Dirac quantization condition,
emphasizing their geometrical and topological aspects.

La existencia de monopolos magnéticos es un argumento suficiente pa-
ra explicar la cuantización de la carga eléctrica, un argumento que fue
presentado por Dirac. Más allá del estado de la búsqueda de monopolos
magnéticos, la descripción formal de la mecánica cuántica de una partícu-
la cargada en el campo de un monopolo magnético tiene mucha riqueza y
ha aumentado nuestro entendimiento de las estructuras matemáticas que
subyacen a esta descripción, así como de sus implicaciones físicas. En
esta corta revisión, presentamos cuatro diferentes argumentaciones que
llevan a la condición de cuantización de Dirac, enfatizando sus aspectos
geométricos y topológicos.
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I | INTRODUCTION

It was discovered by Dirac (Dirac, 1931) that the existence of a single magnetic monopole somewhere
in the Universe would be a sufficient condition for the discreteness of electric charge. We have as
an established fact of nature that the electric charge of charged objects comes in discrete units, with
no deeper understanding of this fact to this day. In spite of a fervent and decades long experimental
and observational search for magnetic monopoles, none has ever been seen (see (Rajantie, 2016), for
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ALL ROADS LEAD TO THE DIRAC QUANTIZATION CONDITION

instance).
Even if a magnetic monopole is never found, reworking the argument by Dirac is fruitful for several
reasons. To begin with, it shows that a very elegant theoretical speculation may explain a very fun-
damental fact, and inspire attempts of quantization procedures of general physical systems (Nettel
et al., 2009) or of coupling constants in field theory (Alvarez, 1985). But in addition to that, after
Dirac’s original presentation, a number of different argumentations have appeared that lead to the
same quantization condition. These other paths employ mathematical tools which, besides being very
powerful, are common to the whole of modern theoretical physics: differential geometry and topology.
In this article, we simply review some of the existing presentations of the Dirac quantization condition.
Through these, we explain in an informal but hopefully intuitive way the mathematical tools that make
them possible. All presentations focus on different aspects of the same physical situation, that of the
quantum description of a charged particle under the influence of a monopole’s field. We first present
in Section ?? the classical argument by Dirac, with the existence of a vector potential with string
singularities. Then in Section III we briefly introduce the necessary background in cohomology and
fibre bundles in order to present in Section IV the formulation of Wu & Yang in terms of non-singular
local vector potentials with the quantization condition as a consistency condition for the existence of the
underlying fibre bundle and in Section V the formulation of Álvarez where the quantization condition
appears as a consistency condition for the freedom to choose any atlas on configuration space, later
expressed as a non-trivial cohomology. Finally, in Section VI we present the formulation of Jackiw in
which the quantization condition restores associativity of quantum operators.

II | DIRAC QUANTIZATION CONDITION

Let us reproduce the quantization condition in the spirit first proposed by Dirac. Let us assume that
magnetic monopoles exist and consider that one with magnetic charge g located at the origin of
coordinates produces a magnetic field B given by

∇ ·B = 4πgδ(r). (1)

Now, consider a surface S enclosing a volume V containing the magnetic monopole. By using Stokes’
theorem we have ∫

S
B ·da =

∫
V

∇ ·BdV = 4πg (2)

and therefore the total magnetic flux through the surface S is 4πg. So far, there is no difference with the
case of an electric charge. Notice that the magnetic field

B(x) = g
x̂
x2 (3)

satisfies the previous equations. In the following we take c = ~= 1.
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Bs

Bm

Figura 1: Magnetic field of an infinitely thin semi-infinite solenoid.

Dirac conceived the magnetic monopole as an infinitely thin semi-infinite solenoid (Coleman, 1982;
Dirac, 1931). The resulting magnetic field can be split into two contributions, one corresponding to the
usual solenoid field Bs confined to its interior and another Bm emanating from the end of the solenoid.
The magnetic field at the end approaches that of a magnetic monopole (see Figure 1) in the limit in
which the thickness of the solenoid decreases. This is fine as long as the field inside the solenoid, and
with this the semi-infinite solenoid, becomes undetectable by any physical means. So, we could try
to detect the solenoid by electron interference as in the Aharonov-Bohm effect (Aharonov and Bohm,
1959). There, we have a variation of a double slit experiment, with electrons emitted by a source O,
passing by the two slits of a surface along trajectories L and R and finally interfering at a detector
screen, but with the presence of the static magnetic field of the solenoid, as in Figure 2. As we know,
the solenoid field is confined within its interior, which is specified as the region S.

O

L

R

S

F

Figura 2: Setting for the Aharonov-Bohm effect.
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The hamiltonian for an electron in the presence of the solenoid field Bs is

H =
1

2m
(p− eAs)

2 , (4)

where As is the vector potential such that ∇×As = Bs and e is the electron’s charge. We can very easily
verify that a solution ψ(x, t) of the corresponding Schroedinger equation

i
∂

∂t
ψ(x, t) = Hψ(x, t) (5)

is of the form

ψ(x, t) = φ(x, t)exp
(

ie
∫ x

x0

As(x′) ·dx′
)
, (6)

where φ(x, t) is a solution to the Schroedinger equation for a free particle. Therefore, the presence of
the magnetic field is reflected on the wavefunctions only by an addition of a phase. This phase is a line
integral of As performed along any path connecting x0 and x in a region not including the solenoid,
where ∇×As = 0. In the Aharonov-Bohm setting, we have two slits through which the electron can
pass, which we call L and R, so that the probability amplitude that the electron reaches point F is

φL(x, t)exp
(

ie
∫

L
As(x′) ·dx′

)
+φR(x, t)exp

(
ie
∫

R
As(x′) ·dx′

)
= exp

(
ie
∫

L
As(x′) ·dx′

)[
φL(x, t)+ exp

(
ie
∫

R
As(x′) ·dx′− ie

∫
L

As(x′) ·dx′
)

φR(x, t)
]
.

(7)

The relative phase factor between the contributions from both slits involves the difference between the
line integrals of As along each path, which is actually a closed line integral. Therefore, the presence of
the magnetic field contributes by a relative phase between the amplitudes for both paths given by∮

C
As(x′) ·dx′ =

∫
R

Bs ·da = 4πg. (8)

This is the well-known story that the electron’s wavefunction picks up a phase due to the magnetic field
even if travels through a region where this magnetic field is absent. However, the solenoid may turn out
to be undetectable if this phase factor is trivial, that is, if

4πge = 2πn, (9)

with n some natural number. This is precisely the Dirac quantization condition. This way, the solenoid
becomes undetectable and we are left only with the monopole field Bm with total charge g.

III | SOME GEOMETRY AND TOPOLOGY

Let us begin by placing some electromagnetic objects in their proper geometric context. We assume
some familiarity with the differential geometry of manifolds. A good introduction can be found in
(Frankel, 2011; Nakahara, 2003), on which we base the following presentation. Typically we depict the
vector potential and the magnetic field as vector fields in R3. Although we will always pay homage to
Faraday’s genius, it might be useful to regard these as differential forms over an arbitrary manifold M.
This identification between vectors and forms is an accident due to the dimensionality of 1- and 2-forms
in three dimensional manifolds. More formally, the potential A is a differential 1-form field, while the
magnetic field B is a 2-form field. These are instances of p-forms, which are totally antisymmetric
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multilinear maps that are given p vectors and return real numbers.

1 | Cohomology

Let Ω
p(M) be the space of smooth p-forms on M, with Ω

0(M) the space of smooth functions on M. In
the following, we will sometimes denote the order of the form by a superscript, as ω

p for a p-form.
The exterior derivative d is an operator that satisfies the following properties:

1. d : Ω
p(M)→Ω

p+1(M),
2. let ω

p ∈Ω
p(M) and ξ

q ∈Ω
q(M), then d(ωp∧

ξ
q) = dω

p∧ξ
q +(−1)p

ω
p∧dξ

q,
3. d2 = 0,

that is, d maps p-forms to (p+1)-forms, satisfies the (graded) Leibniz rule, like any derivative, and is
nilpotent.
We recall Stokes’ theorem. If ω

p−1 is a p−1-form on M and V is a p-dimensional compact orientable
submanifold in M with boundary ∂V , then∫

∂V
ω

p−1 =
∫

V
dω

p−1. (10)

If we define an “inner product” between p-forms ξ
p and p-surfaces W by 〈W,ωp〉=

∫
W

ω
p, then Stokes’

theorem can be expressed as 〈∂V,ωp−1〉= 〈V,dω
p−1〉. This highlights a duality between the exterior

derivative d acting on differential forms and the boundary operator ∂ acting on submanifolds.
We have sufficient ingredients to start introducing the concept of cohomology. Given a p-form ω

p, we
say the ω is closed if dω

p = 0 and that ω
p is exact if ω

p = dη
p−1, that is, if ω

p is the differential of a
(p−1)-form η

p−1. Then the set of closed p-forms is called the cocycle group Zp(M), while the set
the exact p-forms is called the coboundary group Bp(M). Notice that, since the exterior derivative is
nilpotent, then Bp(M) ⊂ Zp(M), but not necessarily the converse is true. Consider now two closed
p-forms ω, ω

′, differing by an exact form, ω
p = ω

′p +dη
p−1. They are said to be cohomologous. If we

identify all cohomologous p-forms, we end up with the quotient space H p(M) = Zp(M)/Bp(M), called
the p-th cohomology group. Cohomology precisely measures the failure of closed forms to be exact.
This is just an example of a possible cohomology construction. We typically need to define cochains, in
this case played by p-forms, and a nilpotent coboundary operator. The dual construction of a homology
is defined in terms of some basic geometrical regions into which any submanifold can be decomposed
called chains and a nilpotent boundary operator.
As an example, consider the form on R2 given by ω

1 = (x2+y2)−1(xdy−ydx). This form is not defined
at the origin, so that the actual manifold on which the form is defined in R−{0}. One can easily show
that ω

1 is closed. On the other hand, if we define the function η = arctan(y/x) = θ, then we can show
that dη = ω

1. However, this does not imply that ω
1 is exact. Note that θ is not a single-valued function,

so that we have to introduce a branch cut, the positive x axis, for example. ω
1 is closed and exact on

R2−branch cut. One can actually move the branch cut somewhere else, since choosing the x axis was
arbitrary, and make ω

1 locally exact over different pieces of R2−{0}. This is actually guaranteed by
Poincare’s lemma, according to which around any point there is a sufficiently small neighborhood in
which any closed form is locally exact. But if ω

1 = dθ were globally exact, its integral along any closed
curve would be zero due to Stokes theorem; however, its integral along the unit circle is 2π. In this case,
one actually computes a non-trivial cohomology group H1(R2−{0}).
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2 | Fibre bundles

The previous discussion on potentials and wavefunctions can be enlightened if we place these objects
in their proper mathematical context, that we know as fibre bundle theory. An accesible introduction
can be found in (Shapere and Wilczek, 2012). In this framework, the vector potential corresponds to
a so called local connection and the wavefunction to a local section in a principal fibre bundle. It is
very useful to review the subject of fibre bundles, since these appear in several very important physical
theories, from the n-body problem (Littlejohn and Reinsch, 1997) to the gauge structure of Hilbert
space in quantum mechanics (Bengtsson and Zyczkowski, 2017) to the Standard Model and gauge field
theory in general (Peskin and Schroeder, 1995; Ryder, 1996), just to mention a few examples.
Consider a product space M×F . In the world of fibre bundles, this is called a trivial fibre bundle. A
fibre bundle is a generalization of product spaces, as a space that locally is a product space. A fibre
bundle E contains a base manifold M and fibre homeomorphic to F such that in any neighborhood U
around a point in M, the bundle looks like U×F . A cylinder and a Möbius band are both locally of the
form S1× [0,1], but the latter is twisted. These two are examples of fiber bundles. Also, S3 is locally of
the form S2×S1, according to the Hopf fibration, but of course it is not globally factorized in that way.
Points in the bundle are specified by the point p on the manifold and the point ξ on the fiber over p, as
we illustrate in Figure 3. We define a projection π : E→M that maps all points ξ on the fibre over p to
p. A section σ : M→ E is an embedding of local patches of the base manifold into the bundle, with the
requirement that (π◦σ)(p) = p. Bundles in which a group G acts on the fibers are called G-bundles
and when the fiber is G itself they are called principal G-bundles, typically denoted by P.

M
p

F

E

π

σ

Figura 3: Fibre bundle structure.

At a point u = (p,ξ) in the bundle E, we may try to decompose the local tangent space as some vertical
subspace and some horizontal subspace, TuE =Vu⊕Hu. We define the vertical direction as that along
the fibre. However, there is no natural identification between points over different fibers, so that there
is no natural definition of the horizontal direction. For this to be defined, we have to implement an
additional structure called the connection ω. This is a g-valued 1-form defined in the bundle that
determines that a vector V in the bundle is horizontal if

ω(V ) = 0. (11)
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Here g is the Lie algebra associated to the group G. Being g-valued implies that it belongs to g⊗
Ω

1(M) and returns an element of g when given a vector. This notion of horizontality is tied to
the particular connection chosen, that is, to a different connection corresponds different horizontal
subspaces. Furthermore, by means of a section σ : M→ E, we may define a local connection 1-form A
in the base manifold M as the pull-back σ

∗
ω.

We may define the concept of holonomy in bundles where we have a structure group G. Given a curve
γ in M, parameterized by t ∈ [0,1], there exist several ways to lift this curve in E. A connection allows
us to define a horizontal lift as that in which the curve γ is lifted following the horizontal directions at
each point in E. Consider that the horizontal lift of γ is given by γ̃. In terms of the local section σ, we
may write that γ̃(t) = σ(γ(t))g(t), with g(t) ∈ G. We may choose a section such that σ(γ(0)) = γ̃(0).
The condition of horizontal lift implies a condition on g(t). If X is the vector tangent to γ, then X̃ = γ̃∗X
is tangent to γ̃. Then we demand that X̃ be horizontal, that is, ω(X̃) = 0. One can show that this implies
the differential equation

dg(t)
dt

=−A(X)g(t), g(0) = identity, (12)

with solution

g(t) = P exp
(
−
∫

γ(t)

γ(0)
A
)
, (13)

the path-ordered exponential of A. When the curve γ is closed and we horizontally lift it in its entirety,
the resulting total lift

gγ = P exp
(
−
∮

γ

A
)

(14)

is called the holonomy. It is interesting that this group element might be non-trivial and therefore
that the horizontal lift of a closed curve might be open. It might gain some intuition as to why the
connections A or ω have to be g-valued. As we horizontally lift a curve, the connection determines the
direction in which we move along the fibers, which is a direction in the Lie algebra g.

M
p

F E

σ1

σ2

σ1(p)

σ2(p)

U1 U2U1 ∩ U2

Figura 4: Gauge transformation.
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Consider two patches U1 and U2 in M. We may choose a section σ1 over U1 and a section σ2 over
U2. At each point p in the overlap U1 ∩U2, there are two sections defined, which are related by a
particular group element g(p) in G, that is, σ2(p) = σ1(p)g(p). This relation between sections is what
we call in physics a gauge transformation. A gauge transformation implies a relation between the local
connections A1 and A2. Notice that the sections not only are defined over different patches in M, but
consist of different regions in the bundle and therefore we are considering pull-backs of ω at different
regions. A standard result is that

A2 = g−1A1g+g−1dg, (15)

where d is the exterior derivative in M.
Finally, consider a principal fibre bundle P over M with fiber G. Consider a k-dimensional vector space
V and a k-dimensional representation ρ of G that acts by the left on V . Given the action of G on P×V
by g� (u,v) = (ug,ρ(g−1)v), we define the equivalence relation in P×V such that (u,v) and g� (u,v)
are identified. Then the quotient space E = P×ρ V = P×V/G is the associated vector bundle with
base space M, fiber V and structure group G. A vector bundle E may exist as an associated bundle to a
principal bundle P or may exist in its own. Conversely, given a vector bundle E, it is possible to define
a principal bundle P associated to it.
Consider a principal U(1)-bundle P over a manifold M and its associated bundle P×ρ C with fiber
C. The latter is called a complex line bundle because the fiber is complex one dimensional. The
representation ρ simply consists of phase factors. A section in the vector bundle over a patch M assigns
a complex number to each point in M, that is, a complex function ψ on M. The group U(1) acts on the
section by g�ψ = eiϕgψ, simply by phase multiplication. Given two patches U1 and U2 in M, sections
ψ1, ψ2 and local connection forms A1, A2 respectively defined on these patches, in a point p in the
overlap U1∩U2 the sections are related by

ψ2 = eiϕ
ψ1, (16)

while the local connections are related by

A2 = e−iϕA1eiϕ + e−iϕdeiϕ = A1 + idϕ. (17)

We will see that the vector potentials of electromagnetism are local connections in a complex line
bundle.

IV | STRING SINGULARITY AND ITS TAMING

There is something very problematic about the previous presentation of the Dirac quantization condition
that a careful reader must have already worried about. But also, to that careful reader, the previous
discussion on cohomology must already be indicating a specific chracterization of what the problem
and its solution are. As we said, the monopole’s magnetic field is specified by a 2-form B. Also, we
have been considering a vector potential specified by a 1-form A, which we regarded as related to B by
B = dA. But then it would happen that dB = 0, that is, there are no magnetic charges. The whole point
of this review is to consider the quantum mechanics of charged particles under the field of magnetic
charges. The reader is in her right to feel confused. It actually happens that the potential A associated to
a magnetic monopole is necessarily singular along a string, as we will soon show. Later on, we will
see how we can get rid off of these singularities, but only at the expense that the whole of space will
have to be divided into patches, over which a local vector potential will be defined. We owe these ideas
to the seminal work by Wu & Yang (Wu and Yang, 1975; Wu and Yang, 1976; Yang, 1977), laying
the foundations for a broader application of the mathematical theory of fibre bundles in fundamental
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physics.

ΩA

ΩB

C

Figura 5: We divide the sphere in two caps ΩA, ΩB with common boundary C (with opposite orientation).

Consider a magnetic monopole of charge g in the center of a sphere of radius R. The cycle C divides the
sphere in two caps ΩA and ΩB, as in figure 5. Then the total magnetic outward flux over the sphere is

4πg =
∫

S2
B =

∫
ΩA

B+
∫

ΩB

B. (18)

Now, assume that the associated vector potential A is free of singularities, so that we can apply Stokes’
theorem to the surface integral over each cap, resulting in∫

ΩA

B+
∫

ΩB

B =
∫

C
A−

∫
C

A = 0, (19)

which is a contradiction. Each sign in the preceding equation is due to the orientation of the cycle C
consistent with the outward orientation of the normal vector on the sphere. This contradiction implies
that the vector potential must be singular somewhere on the sphere. However, since the size of the
sphere was irrelevant in the argument, the singularity must actually lie along an entire string. The
magnetic field is free of singularities, though, and Wu & Yang have shown that the singularity in the
vector potential is not physical, but rather associated to a singularity of a global description in the same
sense that angular coordinates on the sphere are singular if we want them to cover the entire sphere.
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g

Rb

Ra

Figura 6: Patches in which we divide space and on which we divide local vector potentials, reproduced
from (Yang, 1977).

We will thus eliminate the singularities by dividing space in two regions and defining a well-behaved
vector potential in each of them. Figure 6 exhibits two cones in space with their vertices on the monopole
position. Ra is the region above the lower cone, while Rb is the region below the upper cone. The union
of both regions is the whole of space excluding the monopole. In each region, we define the potentials

Ra : Aa = iAa = ig(1− cosθ)dφ,

Rb : Ab = iAb =−ig(1+ cosθ)dφ,
(20)

where (r,θ,φ) are spherical coordinates in R3 and dφ is the dual to the tangent ∂φ to the constant φ

curves. We use objects A and A because u(1)' iR, while the electromagnetic potentials have to be real.
Each potential is well-defined over its own region and by taking B = dA = iB we obtain the monopole
magnetic field B. In the intersection Rab of both regions, both potentials are defined and related in the
usual manner for vector potentials, that is,

Aa−Ab = i(Aa−Ab) = 2igdφ = d(2igφ), (21)

as we can compute directly.
Let us formulate the description of the quantum behaviour of an electron under the magnetic field of a
monopole. In the coordinate basis, the Schroedinger equations for the wave functions ψa and ψb when
the electron is in regions Ra or Rb, respectively, are

− 1
2m

(
∂

∂xµ − ie(Aa)µ

)2

ψa = i
∂ψa

∂t
,

− 1
2m

(
∂

∂xµ − ie(Ab)µ

)2

ψb = i
∂ψb

∂t
.

(22)

In the previous section we showed that the presence of the vector potential term in the Schroedinger
equation can be absorbed into the wave function by a local phase redefinition involving the line integral
of the vector potential, such that the solution to the Schroedinger equation of an electron in the presence
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of a magnetic field is given by equation (6), the product of the wavefunction of a free particle times a
phase factor. Therefore, the solutions to the equations (22) are

ψa(x, t) = φ(x, t)exp
(

ie
∫ x

x0

Aa

)
,

ψb(x, t) = φ(x, t)exp
(

ie
∫ x

x0

Ab

)
,

(23)

such that, in the region Rab of overlap, where the potentials are related by (21), the wavefunctions are
related by

ψa(x) = exp
(

2ieg
∫ x

x0

dφ

)
ψb(x) = e2iegφ

ψb(x) (24)

if the angle φ at the point x0 is taken as 0. If the path over which we perform the integral is a closed,
then φ = 2π and the requirement that the wavefunction be single-valued implies that

4πeg = 2πn, (25)

with n a natural number. This is again Dirac’s quantization condition.
We identify the structure appearing here as that of a complex line bundle over R3−{0} with fiber U(1).
B is a 2-form well-defined over R3−{0}, where it actually satisfies dB = 0. As we learned, B cannot
be globally exact. However, we saw that it can be written as B = dA locally, over patches Ra and Rb,
with Aa and Ab, respectively. In this bundle, we see that the electron’s wavefunction ψ is not a function
but a local section over each patch, and, in the overlap between patches, it transforms as a section ought
to transform, according to equation (24). Additionally, the 1-form A , in the overlap between patches,
transforms as a local connection 1-form according to equation (21). In this context, Dirac’s quantization
condition allows this bundle to have well-defined sections.

V | INTEGRATING OVER DIFFERENT PATCHES AND DIRAC’S QUANTI-
ZATION CONDITION

We now review (Alvarez, 1985) by Álvarez, in which a different argumentation leads again to Dirac’s
quantization condition. He explores the consequences of the path initiated by Wu & Yang, who
emphasized that the vector potential associated to a magnetic monopole is well-defined only locally,
by acknowledging that in principle one can subdivide space into arbitrary sets of patches, over each
of which one defines a local potential. As we will see, this might lead to certain ambiguities in the
quantum description of charged particles under the monopole’s field, which can only be resolved if
again Dirac’s quantization condition is imposed.

1 | Line integral over different patches

Consider again an electron in the field of a magnetic monopole, but now the particle is constrained
to move on the two-sphere. The lagrangian corresponding to the particle contains a kinetic term, an
electromagnetic term and a coupling between the monopole’s vector potential and the particle’s velocity
of the form Aµ(dxµ/dt). This lagrangian was obtained in (Wu and Yang, 1976). Recall that the vector
potential is a local connection 1-form in the base manifold of a bundle with structure group U(1). It is
this coupling that we will concentrate on because of its topological properties. The contribution of this
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coupling to the action, for a given evolution, would be∫
Γ

A, (26)

the line integral of A along some path Γ in configuration space. However, there is the complication that
there does not exist a non-singular vector potential over the entire sphere. The solution is to cover the
sphere with different patches over which there is a well defined vector potential. In case of having a
path belonging to two different patches, one has to integrate the connection defined in one patch up to
some point in the overlap between both patches, then switch to the connection defined on other patch
and integrate it there. However, this is not trivial.

F P I

Uα Uβ

Figura 7: Double overlap. The path comprises two patches and goes from F to I.

Consider Figure 7. There we have such path belonging to two patches. We integrate Aα in Uα from F
to P in the overlap and then Aβ from P to I in Uβ. We call

IP =
∫ P

F
Aα +

∫ I

P
Aβ. (27)

This is the integral associated to having chosen the particular point P. We will show that this integral
actually depends on P. Consider a different point Q ∈Uα∩Uβ. We have

IQ =
∫ Q

F
Aα +

∫ I

Q
Aβ, (28)

so that

IP− IQ =
∫ P

F
Aα +

∫ I

P
Aβ−

∫ Q

F
Aα−

∫ I

Q
Aβ

=
∫ Q

F
Aα +

∫ P

Q
Aα +

∫ I

P
Aβ−

∫ Q

F
Aα−

∫ P

Q
Aβ−

∫ I

P
Aβ

=
∫ P

Q
(Aα−Aβ).

(29)

The resulting integral is defined over a segment PQ in the intersection Uα∩Uβ. Being both connections
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defined in the intersection, they are related by a gauge transformation, Aα = Aβ+dψαβ, with ψαβ being
some function defined in the overlap. Therefore,

IP− IQ =
∫ P

Q
(Aα−Aβ) =

∫ P

Q
dψαβ = ψαβ(P)−ψαβ(Q). (30)

In particular, the quantity I = IP−ψαβ(P) is independent of the choice of P. We owe this interesting
observation to (Wu and Yang, 1976). The missing step was substracting the gauge function ψαβ

evaluated at the intermediate point P.

F R Q P I

Uα Uβ

Uγ

Figura 8: Triple overlap. The path comprises three patches and goes from F to I.

What happens when we have a triple overlap, such as in Figure 8? We could be done with just two
patches, but what if we want to consider three patches? In the end, we can partition the whole space
into patches in arbitrary ways. Then the line integral is

I3 =
∫ R

F
Aα−ψαγ(R)+

∫ P

R
Aγ−ψγβ(P)+

∫ I

P
Aβ. (31)

We choose intermediate points R, P in the overlaps between patches, integrate along one patch up to
those points, include the contribution by the gauge functions and keep integrating along the other patch
and so on. We use the subscript 3 to denote that we have used the three patches. A straightforward
calculation, completely analogous to the one for two patches, shows that such prescription is independent
of P and Q. This result resembles the one for two patches, we integrate along a certain patch, include
the transition function anytime we change patch, keep integrating over the new patch, and so on. We
may use instead just two patches, yielding the integral

I2 =
∫ Q

F
Aα−ψαβ(Q)+

∫ I

Q
Aβ. (32)

with an intermediate point Q. The integrals along FQ and QI, over a single patch, are well defined.
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However, these belong partially to Uγ and can be further decomposed. Take points R ∈ Uα ∩Uγ,
P ∈Uγ∩Uβ. Then, since FQ = FR+RQ and QI = QP+PI,

I2 =
∫ R

F
Aα +

∫ Q

R
Aα−ψαβ(Q)+

∫ P

Q
Aβ +

∫ I

P
Aβ. (33)

There is no cost in splitting because the integrals are performed over the same patch. But RQ,QP ∈Uγ

and we can use the connection defined in Uγ. Since in the corresponding overlaps Aα = Aγ +dψαγ and
Aβ = Aγ +dψβγ, we can substitute that in the last expression, integrate the differentials as to obtain
boundary terms, do some algebra and obtain

I2 =
∫ R

F
Aα−ψαγ(R)+

∫ P

R
Aγ−ψγβ(R)+

∫ I

P
Aβ−

[
ψαβ(Q)+ψβγ(Q)+ψγα(Q)

]
= I3−

[
ψαβ(Q)+ψβγ(Q)+ψγα(Q)

]
.

(34)

We obtain the result when we use three patches, plus some additional terms, all of which are gauge
functions evaluated at Q. Observe that

Aα−Aβ = dψαβ,

Aβ−Aγ = dψβγ,

Aγ−Aα = dψγα,

(35)

which, summed, implies that

d
(
ψαβ +ψβγ +ψγα

)
= 0, (36)

the extra terms give a closed 2-form. The sum of functions in the last equation, whose differential
vanishes, is defined in the triple intersection Uα∩Uβ∩Uγ. We may use a covering such that this triple
intersection is diffeomorphic to an open ball. Then, by the Poincaré lemma, the closed form can be
integrated, resulting in

ψαβ +ψβγ +ψγα = cαβγ, (37)

where cαβγ is a constant over the triple overlap. In conclusion, we may use two or three patches to
evaluate the line integral of the connection and there would be a difference of a constant term. If this
line integral appears in the action, this constant term does not modify the classical equations of motion.
In quantum mechanics, however, this may lead to ambiguities. The article (Alvarez, 1985) calls this an
ambiguity because there is no prescription for a choice of patches, these possible choices differing by
a constant. Making this ambiguity physically irrelevant will lead, once again, to Dirac’s quantization
condition.

2 | Resolving the ambiguity

The wavefunction ψ of an electron under the magnetic field of a monopole is given by eie
∫

Γ A
ψfree, as

we saw, where there is additional phase factor involving a line integral of the vector potential. This
term may produce observable consequences in interference experiments, like in the Aharonov-Bohm
experiment. There is an ambiguity in the line integral of the connection, for the reasons mentioned
above, there is an extra eiecαβγ phase factor when triple overlaps are considered. But we can make this
ambiguity unobservable if each cαβγ can be made equal to an integer multiple of 2π/e. In the following
we will see that this leads precisely to Dirac’s quantization condition.
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Eαβ

Vα Vβ

Figura 9: Magnetic flux through a couple of overlapping patches.

In order to relate the constants cαβγ to the quantization condition, we first integrate the magnetic field B
over the entire sphere. If we integrate the magnetic field over all patches, then we are over summing
because we are considering several times the overlapping regions. Therefore we consider regions Vα

like the ones in Figure 9 which split the overlaps and prevent us from considering them twice. Then the
integral of the magnetic field can be taken as∫

S2
B = ∑

α

∫
Vα

B. (38)

In each of the Vα, we have a well behaved vector potential and by using Stokes’ theorem we write

∑
α

∫
Vα

B = ∑
α

∫
Vα

dA = ∑
α

∫
∂Vα

A. (39)

The line Eαβ is a common border of Vα and Vβ. According to the last expression, the line integral
along this border appears twice, once with respect to Aα and once with respect to Aβ, with opposite
orientations. Therefore there is a contribution to the flux given by the term∫

Eαβ

(Aα−Aβ) =
∫

Eαβ

dψαβ =
∫

∂Eαβ

ψαβ, (40)

since this border belongs to the overlap, where Aα = Aβ +dψαβ. The last expression is just the value of
ψαβ at the endpoints of Eαβ.
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Q

Vα Vβ

Vγ

Figura 10: Magnetic flux in a triple of overlapping patches.

What happens when we have triple intersections, like in Figure 10? By the same arguments, the integral
of the magnetic field over the three patches will be the integral over the boundaries of Vα, Vβ and Vγ.
Each of these boundaries contributes with two common borders, Eαβ, Eβγ and Eγα, so that these appear
twice with opposite orientations. Therefore, there will be a contribution of the form∫

∂Eαβ

ψαβ +
∫

∂Eβγ

ψβγ +
∫

∂Eγα

ψγα (41)

which will yield the term ψαβ(Q)+ψβγ(Q)+ψγα(Q), already familiar to us as cαβγ plus the transition
functions evaluated at the remaining endpoints of the common boundaries, which, after considering the
complementary patches, will be considered themselves points in triple intersections. Therefore, the
total magnetic flux will be ∫

S2
B = ∑

Uαβγ

cαβγ =
2π

e ∑
Uαβγ

nαβγ (42)

where nαβγ is an integer value such that the constant cαβγ = 2πnαβγ/e over the triple intersection
Uαβγ = Uα ∩Uβ ∩Uγ. We know that nαβγ has to be an integer value as to remove the ambiguity in
the wavefunction of an electron after patching the sphere with double or triple overlaps. If the total
magnetic flux over S2 is 4πg, then

4πeg = 2π ∑
Uαβγ

nαβγ, (43)

which is precisely Dirac’s quantization condition. This arises again from a consistent unambiguous
quantum mechanics of an electron in a monopole field.
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3 | Čech cohomology

Čech cohomology is the setting in which the previous discussion can be formalized. Consider a manifold
M. On this manifold, we will consider that it is always possible to have an open cover {Uα} such that
each open set and each non-empty finite intersection of open sets is diffeomorphic to an open ball in
Rn. This is called a good cover. The existence of such cover is guaranteed for all manifolds and, when
the manifold is compact, this cover can chosen to be finite (Raoul Bott, 1982). The benefit of this cover
is that in each intersection, Poincaré lemma holds. One can dispense of a good cover at the expense of
extra technical complications.
On each non-empty finite intersection, we define

Uαβ =Uα∩Uβ,

Uαβγ =Uα∩Uβ∩Uγ,

Uαβγδ =Uα∩Uβ∩Uγ∩Uδ,

(44)

and so on. An orientation is formally defined as “Uαβ =−Uβα”. In each of these objects, we define a
triangulation. In the interior of each open set, we take a point which will be the vertex of a resulting
triangulation: for a single open set, we have a point as 0-simplex, for a double intersection we have a
line as 1-simplex, for a triple intersection we have a triangle as 2-simplex and so on. This way, the open
cover results in a triangulation of the entire manifold. Additionally, the orientation difference between
Uαβ and Uβα makes sense, they give rise to 1-simplices with opposite orientations. This will be the
building blocks of a simplicial homology.

Uα

Uα

Uαβ

Uα Uβ

Uαβγ

Uα Uβ

Uγ

Figura 11: A single open set gives rise to a 0-simplex (a point). Two open sets give rise to a 1-simplex
(a line). Three open sets give rise to a 2-simplex (a triangle including the interior).

In general, the object Uα0α1...αp is called a p-simplex and, from these, we define p-chains as formal
linear combinations with integer coefficients of p-simplices. Then, the definition of Čech homology
proceeds as a simplicial homology. We call Cp(U) the set of all p-chains. The coboundary operator
∂ is such that ∂Uαβ =Uβ−Uα, ∂Uαβγ =Uβγ−Uαγ +Uαβ and so on for higher chains. In general, the
operator ∂ is such that ∂ : Cp(U)→Cp−1(U) and acts on a p-simplex as

∂Uα0...αp =
p

∑
i=0

(−1)iUα0...α̂i...αp , (45)
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where ˆ over an element means removal. We can compute that the application of the boundary operator
on the lowest order cochains gives:

∂Uα = 0,
∂Uαβ =Uβ−Uα,

∂Uαβγ =Uαβ +Uβγ +Uγα,

∂Uαβγδ =Uβγδ−Uαγδ +Uαβδ−Uαβγ.

(46)

We have, for example, that ∂(∂Uαβγ) = ∂(Uαβ +Uβγ +Uγα) = Uβ−Uα +Uγ−Uβ +Uα−Uγ = 0. In
general, using (45), it can be shown that the boundary operator is nilpotent, ∂

2 = 0.
Consider a p-chain Uα0...αp . If ∂Uα0...αp = 0, we say that the p-chain is a p-cycle. On the other
hand, if there exists a Uα0...αp−1 such that Uα0...αp = ∂Uα0...αp−1 , then the p-chain is a p-boundary.
We call Zp(U) the set of all p-cycles and Bp(U) the set of all p-boundaries. Alternative definitions
are Zp(U) = Ker∂Cp(U) and Bp(U) = Im∂Cp−1(U). Since the boundary operator is nilpotent, any
p-boundary is a p-cycle, so that Bp(U)⊂ Zp(U), but not the other way around, not all p-cycles are p-
boundaries. Finally, we define the p-th Čech homology group as the quotient Hp(U) = Zp(U)/Bp(U).
What we have defined so far is the Čech homology, but what will be useful for properly stating the
ambiguity in using different patches for the monopole problem is rather Čech cohomology. Here, we
define a p-cochain with values in q-forms as an assigment of a local q-form for each p-chain Uα0···αp

associated to the cover U. We write as Cp(U,Ωq) the set of p-cochains with values in q-forms, where
Ω

q is the space of q-forms. For example, the collection {Aα} is an element of C0(U,Ω1), an assigment
of a 1-form to each open set; similarly, the collection {cαβ} is an element of C2(U,Ω0), that is, an
assignment of a function on each triple overlap, and so on. Note that p-cochains have p+1 indices.
We further define a coboundary operator δ such that δ : Cp(U,Ωq)→Cp+1(U,Ωq) and acts in the
following way for low p,

δ{Aα}= {Aα−Aβ},
δ{Bαβ}= {Bαβ +Bβγ +Bγδ},

δ{Cαβγ}= {Cαβγ +Cβγδ +Cγδα +Cδαβ}.
(47)

Given a 0-cochain {Aα}, we have that δ{Aα}= {Aα−Aβ}. That this 0-cochain be a 0-cocycle means
that {Aα−Aβ}= {0} in each overlap Uα∩Uβ. This is the condition that A be a global form. Global
forms can be identified with C−1(U,Ωq) and for these δ acts just by restricting the global form to each
open set. It can be shown that the coboundary operator is nilpotent and therefore we have all we need
in order to define cocycles, coboundaries and cohomology groups in exactly the same way as we have
done before. However, these are not the cohomology groups that we are not going to refer to these as
the Čech cohomology groups.
Thus, we learn that in the monopole problem {cαβγ}= δ{ψαβ}, that is, the collection of {cαβγ} is a
2-cocycle.
Note that cochains Cp(U,Ωq) are indexed by two labels, the order p or the cochain and the order q of
the form. On the space of forms we also have a coboundary operator d, the exterior derivative, raising
the order of differential forms and being nilpotent. Therefore, we can also define a cohomology with
respect to these operator by restricting to cochains of the same order and forms of the same order. This
is the usual de Rham cohomology.
We therefore introduce the tic-tac-toe boxes, with p associated to rows and q to columns. Schematically,
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we have

Ω
3 C0(U,Ω3) C1(U,Ω3) C2(U,Ω3) C3(U,Ω3)

Ω
2 C0(U,Ω2) C1(U,Ω2) C2(U,Ω2) C3(U,Ω2)

Ω
1 C0(U,Ω1) C1(U,Ω1) C2(U,Ω1) C3(U,Ω1)

Ω
0 C0(U,Ω0) C1(U,Ω0) C2(U,Ω0) C3(U,Ω0)

d ↑

δ → C0 C1 C2 C3

(48)

In the monopole problem, the initial data are the vector potentials {Aα} locally defined in each patch and
the transition functions {ψαβ} in each overlap between patches. We move vertically and horizontally
with the coboundary operators associated to both cohomologies in the following way:

Ω
3 0

Ω
2 {dAα}= {Fα} 0

Ω
1 {Aα} δ{Aα}= {dψαβ} 0

Ω
0 {ψαβ} δ{ψαβ}= {cαβγ} 0

d ↑

δ → C0 C1 C2 C3

(49)

From this, we learn that F is d-closed and zero δ-cocycle. Therefore F is a global closed differential
form. Additionally, we learn that {cαβγ} is a d-closed 0-form two δ-cocycle.

VI | THREE-COCYCLE IN QUANTUM MECHANICS

There exists yet another approach to the quantization condition found by Dirac, which we owe to
Jackiw (Jackiw, 1985). This other argumentation is still more surprising, because the violation of the
quantization condition implies that the quantum mechanics of an electron under a monopole field
becomes non-associative. Different ways of composing three succesive translation operators will
produce results differing in a phase factor that will be interpreted as a certain cochain in a particular
cohomology.

REF-UNAH / Vol. 6 - No. 1 / 118 - 125



ALL ROADS LEAD TO THE DIRAC QUANTIZATION CONDITION

1 | Non-associativity and Jacobi identity violation in Quantum Mechanics

Consider an electron in the background magnetic field B of a monopole located at position r0. For
simplicity, we set m = ~= 1. The magnetic field satisfies

∇ ·B = 4πgδ(x), (50)

where g is the monopole’s charge. In this case, the canonical momentum conjugate to x, is

p = v+ eA (51)

where v is the electron’s velocity and A is the vector potential that satisfies ∇×A = B. As we know, the
momentum p is gauge dependent, while v is gauge independent, it is just the time derivative of position.
Since A is only a function of position x, both p and v have the same commutation relations with x,
and we can generate spatial translations with either of them. If we are interested in gauge invariance,
we use the gauge invariant operator v, so that the gauge invariant representation of a translation by
a vector a is given by U(a) = eia·v, since we can easily show, using Baker-Campbell-Hausdorff, that
U(a)xU−1(a) = x+a. However, this representation is not trivial since v satisfies the algebra[

vi,v j]= ie∑
k

ε
i jkBk. (52)

This is the usual story about the non-commutativity induced by the presence of a magnetic field.
Furthermore, we can see that[[

v1,v2] ,v3]+ [[
v3,v1] ,v2]+ [[

v2,v3] ,v1]=−4πegδ(r− r0). (53)

This means that the invariant generators of translations satisfy the Jacobi identity everywhere except at
the monopole’s position. This happens at the level of translation generators. Let’s see what happens at
the group representation level.

x

a1

a2

Figura 12: The phase in the projective product is the magnetic flux across this triangle.

Given a wavefunction Ψ(x) in the coordinate representation, the action of the translation operator can
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be expressed as

U(a)Ψ(x) = eia·v
Ψ(x) = eia·ve−ia·p

Ψ(x+a) = exp
(
−ie

∫ x+a

x
A ·ds

)
Ψ(x+a) (54)

with the line integral being performed along the straight line joining the points x and x+a. The
easiest way to prove this result is by defining the operator W (λ) = eiλa·ve−iλa·p, which can be shown to
satisfy the differential equation dW (λ)/dλ =−iea ·A(x+λa)W (λ), with W (0) = 1. A solution of this

differential equation is W1(λ) = exp
(
−ie

∫
λ

0
A(x+ sa) ·ads

)
= exp

(
−ie

∫ x+λa

x
A ·ds

)
, but due to

uniqueness of solutions, W (λ) =W1(λ) and the result follows by evaluating at λ = 1. Thus the action
of the translation operator carries an additional phase. For a product of two translation operators, we
have

U(a1)U(a2)Ψ(x) = eia1·veia2·vΨ(x)

= exp
(
−ie

∫ x+a1

x
A ·ds

)
exp

(
−ie

∫ x+a1+a2

x+a1

A ·ds
)

Ψ(x+a1 +a2)

= exp
(
−ie

∫ x+a1

x
A ·ds

)
exp

(
−ie

∫ x+a1+a2

x+a1

A ·ds
)

exp
(
−ie

∫ x

x+a1+a2

A ·ds
)

×U(a1 +a2)Ψ(x)

= exp
(
−ie

∫
4

B ·dn
)

U(a1 +a2)Ψ(x)

(55)
where4 is the triangle formed by the vertices (x,x+a1,x+a1 +a2) with surface element dn along
the outward direction a1×a2. This integral is therefore the magnetic flux across the surface4. The
second equality makes evident that the representation of translations is projective. The last equality
shows that the composition of two translation operators produces a phase factor related to the magnetic
flux through a triangle4 generated by the translation directions.

Figura 13: The phase appearing in the non-associative product is the magnetic flux across this tetrahe-
dron.
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It is interesting that from the product of two translations we can derive the product of three translations,
namely,

U(a1) [U(a2)U(a3)] = e−ieΦ23U(a1)U(a2 +a3) = e−ie(Φ23+Φ1(2+3))U(a1 +a2 +a3) (56)

[U(a1)U(a2)]U(a3) = e−ieΦ12U(a1 +a2)U(a3) = e−ie(Φ12+Φ(1+2)3)U(a1 +a2 +a3), (57)

so that

[U(a1)U(a2)]U(a3) = e−ie(Φ23+Φ1(2+3)−Φ12−Φ(1+2)3)U(a1) [U(a2)U(a3)] , (58)

where Φi j is the magnetic flux across the triangle with vertices (x,x+ ai,x+ ai + a j) with outward
normal in the direction of ai× a j and Φ(i+ j)k is the magnetic flux across the triangle with vertices
(x,x+ ai + a j,x+ ai + a j + ak) with outward normal in the direction of (ai + a j)× ak and so on.
Considering the tetrahedron in Figure 13, we may identify the normal outward orientation of its faces,
so that Φ23 goes inward, Φ12 goes outward, Φ1(2+3) goes inward and Φ(1+2)3 goes outward. Therefore,
Φ12−Φ23 +Φ(1+2)3−Φ1(2+3) is the total outward flux across the tetrahedron’s faces and the exponent
in the non-associative product is e times this total flux. If the tetrahedron does not enclose the monopole,
then this flux vanishes and associativity is restored. However, if the tetrahedron encloses the monopole,
there is a net flux equal to 4πg and a total phase of 4πeg. As we shrink the tetrahedron to a point, we
obtain infinitesimally the violation of the Jacobi identity. Note that if we wish to restore associativity,
then eg must be quantized in units of 1/2, which is Dirac’s quantization condition. In the following
we will see that the phase appearing in the non-associative product corresponds to a 3-cocycle in an
appropiate cohomology.

2 | Cohomology for group actions on manifolds

The following discussion is based faithfully on section 5.4 of (Azcárraga and Izquierdo, 1995). Defining
a cohomology involves defining cochains and a nilpotent coboundary operator. The proper context
is that of a group G acting on a manifold M , with the cochains being functions on this manifold,
that is, elements of F (M ). Addition of functions on the manifold is defined in the natural way,
( f1 + f2)(x) = f1(x)+ f2(x). The action of a group element g on a point x in the manifold is written as
xg.
We first define F (M )-valued n-cochains on G in the following way. Consider a group G acting

on a manifold M . F (M )-valued n-cochains are mappings Ωn :
n times

G×·· ·×G→ F (M ) so that Ωn :
(g1, . . . ,gn) 7→Ωn( · ;g1, . . . ,gn) where Ωn( · ;g1, . . . ,gn) : M →R and Ωn( · ;g1, . . . ,gn) : x 7→Ωn(x;g1, . . . ,gn).
That is, a n-cochain takes n elements in the group G and returns a function on the manifold M that
uses those elements as parameters. The space of n-cochains is Cn(G,F (M )). The addition of n-
cochains Ωn and Ω

′
n is defined by (Ωn + Ω

′
n)( · ;g1, . . . ,gn) = Ωn( · ;g1, . . . ,gn) + Ω

′
n( · ;g1, . . . ,gn).

Thus Cn(G,F (M )) is an abelian group. Furthermore, C0(G,F (M )) = F (M ). We further define the
coboundary operator δ : Cn(G,F (M ))→Cn+1(G,F (M )) such that

[(δΩn)( · ;g1, . . . ,gn+1)] (x) = (δΩn)(x;g1, . . . ,gn+1)

≡ (−1)n+1
Ωn(x;g1, . . . ,gn)

+
n

∑
i=1

(−1)i
Ωn(x;g1, . . . ,gi−1,gigi+1,gi+2, . . . ,gn+1)

+Ωn(xg1 ;g2, . . . ,gn+1).

(59)
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The coboundary operator is a mapping between n-cochains to (n + 1)-cochains, that is, a map-
ping between functions on the manifold. We use the extra group element in δΩn to define an ac-
tion Φ of G on F (M ), Φ(g) : F (M ) → F (M ) such that, given a function f in F (M ), it is
satisfied (Φ(g) f )(gx) = f (x). It follows that Φ(g′)(Φ(g) f )(x) = (Φ(g) f )(g′−1x) = f (g−1g′−1x) =
f ((g′g)−1x) = (Φ(g′g) f )(x), so that Φ is a left action. It is possible to define a coboundary operator as
a right action, but we do not consider that possibility since the group we are interested in is abelian.
The first applications of the coboundary operator are

(δΩ0)(x;g1) =−Ω0(x)+Ω0(xg1),

(δΩ1)(x;g1,g2) = Ω1(x;g1)−Ω1(x;g1g2)+Ω1(xg1 ;g2),

(δΩ2)(x;g1,g2,g3) =−Ω2(x;g1,g2)−Ω2(x;g1g2,g3)+Ω2(x;g1,g2g3)

+Ω2(xg1 ;g2,g3),

(δΩ3)(x;g1,g2,g3,g4) = Ω3(x;g1,g2,g3)−Ω3(x;g1g2,g3,g4)+Ω3(x;g1,g2g3,g4)

−Ω3(x;g1,g2,g3g4)+Ω3(xg1 ;g2,g3,g4).

For the previous examples, one can see that δ(δΩn) = 0. The general statement that the coboundary
operator is nilpotent, δ

2 = 0, can also be proved through straightforward calculations, which is the
remaining requirement to be satisfied by the coboundary operator to form a cohomology.
Given a cochain Ωn, if δΩn = 0, then the cochain is said to be a cocycle. If there exists some Ω

′
n−1

such that δΩ
′
n−1 = Ωn, then the cochain is said to be a coboundary. A coboundary is a cocycle

because δΩn = δ(δΩ
′
n−1) = 0, but not all cocycles are coboundaries, that is, not because δΩn = 0

can we conclude that Ωn is a coboundary. The set of n-cocycles is Zn(G,F (M )), while the set of
n-coboundaries is Bn(G,F (M )). Then Bn(G,F (M ))⊂ Zn(G,F (M )). When a cocycle turns out to
be a coboundary, we say that the cocycle is trivial. Otherwise, the structure of non-trivial cocycles
is encoded in the cohomology groups. The n-th cohomology group is defined as Hn(G,F (M )) =
Zn(G,F (M ))/Bn(G,F (M )). The underlying equivalence relation is that of two n-cocycles differing
by a n-coboundary, that is, given Zn,Z′n ∈ Zn(G,F (M )), Zn ∼ Z′n iff Zn − Z′n = δΩn−1 for some
Ωn−1 ∈Cn−1(G,F (M )).

3 | Cohomology in the monopole problem

In the context discussed previously of a charged particle in magnetic monopole field, we have the
abelian group of translations acting on 3-dimensional euclidean spacetime, that is, G =R3 and M = R3.
Given any reference point x0, we define a 0-cochain as

Ω0(x) =
∫ x

x0
A ·ds. (60)

3.1 | 1-cochain

Defined as

Ω1(x;a1) =
∫ x+a1

x
A ·ds, (61)
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the phase (54) appearing in the action of the invariant translations is a 1-cochain. We observe that

Ω1(x;a1) =
∫ x0

x
A ·ds+

∫ x+a1

x0
A ·ds

=−Ω0(x)+Ω0(x+a1)

= (δΩ0)(x;a1).

(62)

Therefore, Ω1 is a trivial cochain.

3.2 | 2-cochain

Defined as the surface integral

Ω2(x;a1,a2) =
∫
4

B ·dn (63)

over the triangle with vertices (x,x+ a1,x+ a1 + a2) with normal n in the direction of a1× a2, the
phase (55) appearing in the projective representation of the invariant translation operator is a 2-cochain.
However, note that the boundary of this triangle is given by the straight segments (x,x+a1)+ (x+
a1,x+a1 +a2)+(x+a1 +a2,x), so that, by using Stokes theorem, we have

Ω2(x;a1,a2) =
∫

∂4
A ·ds

=
∫ x+a1

x
A ·ds+

∫ x+a1+a2

x+a1

A ·ds+
∫ x

x+a1+a2

A ·ds

= Ω1(x;a1)−Ω1(x;a1 +a2)+Ω1(x+a1;a2)

= (δΩ1)(x;a1,a2).

(64)

However, the use of Stokes’ theorem is limited by the presence of the string singularity. Only when the
string singularity is not enclosed by4 can we consider this 2-cochain as trivial. But also in that case,
Ω2 = δ

2
Ω0 and the 2-cochain would vanish.

3.3 | 3-cochain

Finally, defined as

Ω3(x;a1,a2,a3) =
∫

T
B ·dn (65)

where T is the tetrahedron defined by the vertices (x,x+a1,x+a1 +a2,x+a1 +a2 +a3), the phase
(58) breaking non-associativity is a 3-cochain. This 3-cochain is the total magnetic flux through the
tetrahedron T . If4i j is the triangle with vertices (x,x+ai,x+ai +a j) and4i( j+k) is the triangle with
vertices (x,x+ai,x+ai +a j +ak), we can write this total flux as a sum of outward fluxes through each

REF-UNAH / Vol. 6 - No. 1 / 123 - 125



ALL ROADS LEAD TO THE DIRAC QUANTIZATION CONDITION

of the four tetrahedron’s faces as

Ω3(x;a1,a2,a3) =
∫
412

B ·dn+
∫
432

B ·dn+
∫
4(12)3

B ·dn+
∫
4(23)1

B ·dn

=
∫
412

B ·dn+
∫
4(12)3

B ·dn−
∫
423

B ·dn−
∫
41(23)

B ·dn

= Ω2(x;a1,a2)+Ω2(x;a1 +a2,a3)−Ω2(x;a1,a2 +a3)−Ω2(x+a1;a2,a3)

=−(δΩ2)(x;a1,a2,a3).

(66)

We have repeatedly used that4i j and4 ji have opposite orientations and therefore integrals over such
triangles have opposite signs. This last equality shows that Ω3 is also trivial. In the case that Ω2 was
trivial, then Ω3 = δ

2
Ω1 = 0. That was determined by the faces of the tetrahedron being penetrated by

Dirac’s string.
As Jackiw points out in (Jackiw, 1984), that all these cocycles be trivial implies that an operator
redefinition can be done that restores a trivial representation and associativity. This representation is,
no surprise, the one generated by the gauge dependent p. Nevertheless, if we stick to representing
translations with gauge invariant operators, we must remain with these cocycles.

VII | DISCUSSION

In this short review, we have presented some of the arguments leading to the Dirac quantization
condition. There exist yet other arguments, which we invite the reader to consult on his own (Deguchi
and Kitsukawa, 2006). What we learn in the end is that if magnetic monopoles are ever found to exist,
the quantization condition has to be satisfied in order to avoid a catasprophe in the so far extremely
effective mathematical structure of fundamental physics: gauge invariance and asociativity. At the core
of the arguments stands out the impossibility to extend differential forms over the whole of space due
to the non-trivial topology of configuration space that a monopole induces. This is what the de Rham
and the Čech cohomologies are telling us.
It remains to explore the equivalence or the interconections between the different arguments, which we
have not attempted to do and which might prove to be a very fruitful endeavor.
Although these descriptions are elegant and perhaps paradigmatic in the clean and efficient application
of mathematics to physics, in this case as an explanation of the quantization of electric charge, Nature
is yet to reveal if these notions are of any relevance here. It is pertinent here to bring the sober attitude
of Dirac himself (Dirac, 1981) (quoted from (Jackiw, 2004)):

I am inclined now to believe that monopoles do not exist. So many years have gone by
without any encouragement from the experimental side.
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