

REF-UNAH v12i1, 112-131 (2024) • DOI: https://doi.org/10.5377/ref.v12i1.19439

Principios Físicos involucrados en el tostado de café Utilizando un concentrador solar de Fresnel

Physical Principles involved in coffee roasting Using a Fresnel solar concentrator

L. Martínez¹, F. Serrano², M. Flores³

Recibido: 15 de febrero de 2023 / Aceptado: 13 de octubre de 2023

RESUMEN

Considerando que el sol es una fuente inagotable de energía, se puede aprovechar para tostar los granos de café de una manera sostenible mediante el uso de concentradores solares. Este estudio está basado en un concentrador solar de Fresnel anidólico, con diseño novedoso, con el cual, se logra recolectar la energía procedente del sol en la cámara de tostado metálica de forma cilíndrica, incorporada a un motor que la hace girar para tostar los granos de café de una manera homogénea. En esta investigación, se analizan los principios físicos (transferencia de calor, potencia, eficiencia, entre otros) involucrados en el tostado de café. Realizando para ello, mediciones de temperatura en la cámara de tostado, temperatura ambiente, irradiancia y velocidad del viento a diferentes horas del día, con el fin de conocer el tiempo necesario para tostar una masa determinada de café. Los resultados indican que el concentrador solar en estudio, es funcional, ya que la cámara de tostado alcanza temperaturas mayores a los 240 °C, siendo la temperatura ideal para tostar café entre 180°C y 240 °C. Cabe destacar que para alcanzar esa temperatura, la irradiancia debe de ser al menos de 1,100 W/m2.

ABSTRACT

Considering that the sun is a great source of energy, it can be used to roast coffee beans in a sustainable way using solar concentrators. This study is based on a anidolic Fresnel solar concentrator with a unique design, with which it is possible to collect the energy from the sun in a roasting chamber, incorporated into a motor that rotates in order to roast the coffee beans in a homogeneous way. In this research, the physical principles (heat transfer, power, efficiency, among others) involved in coffee roasting are analyzed. Carrying out temperature measurement in the roasting chamber, ambient temperature, irradiance, and wind speed at different times of the day, in order to know how long it takes to roast a given mass of coffee. The results indicate that the solar concentrator under study is functional, since it reaches temperatures greater higher than 240 °C and the ideal temperature for roasting coffee is between 180 °C and 240 °C. But for this, the irradiance must be at least 1,100 W/m2.

PALABRAS CLAVES

Concentrador solar, Fresnel, tostado de café, eficiencia, sostenibilidad

KEYWORDS

Solar concentrator, Fresnel, coffee roasting, efficiency, sustainability

¹Departamento de Física de la Tierra, Escuela de Física. Universidad Nacional Autónoma de Honduras, leslie.martinez@unah.edu.hn

²Instituto de Investigación en Energía, Facultad de Ciencias. Universidad Nacional Autónoma de Honduras. serranofer@eclipso.eu

³Instituto de Investigación en Energía, Facultad de Ciencias. Universidad Nacional Autónoma de Honduras. marco.flores@unah.edu.hn

^{*} Esta obra está bajo una licencia Creative Commons Reconocimiento - NoComercial 4.0 Internacional 🕳 🕒

^{*} This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 🐵 🕒

I | MARCO TEÓRICO

1 | Colectores solares

Según (Coll (2017)), el colector solar es un dispositivo capaz de recibir la energía solar en forma de radiación y convertirla en otro tipo de energía.

Se pueden definir dos tipos de colectores solares:

- a) Colector solar no concentrador: Cuando el área de apertura es igual al área de recepción.
- b) Colector solar concentrador: Cuando el área de apertura es mayor al área de recepción.

En este caso, el colector usado es un concentrador solar.

2 | Concentración de la radiación solar

Según (Muerza (2012)), la concentración de la radiación solar se consigue utilizando una gran cantidad de espejos que pueden seguir al sol y luego concentrar su calor en un punto.

3 | Tipos de concentradores solares

- (R. Leutz y A. Suzuki (2001)) señalan que "existen dos tipos de concentradores solares, en función de su diseño óptico y propiedades de imagen".
- Concentradores formadores de imágenes.
- 2. Concentradores no formadores de imágenes (Anidólicos).

En esta investigación se utilizó un concentrador solar de Fresnel anidólico.

4 | Diseño técnico del concentrador Solar de Fresnel

El concentrador solar tiene una estructura metálica en forma de paraboloide circular, cubierto por 46 segmentos de conos reflejantes de aluminio de alta reflectividad, como se observa en la Figura 1. Las especificaciones del concentrador solar de Fresnel se muestran en la tabla 1.

Figura 1: Concentrador solar de Fresnel anidólico y la tostadora de café Fuente: Elaboracion Propia

Colector concentrador				
Forma	Paraboloide circular			
Área de apertura	2.9255 m2			
Es	spejos de Fresnel			
Material	Aluminio altamente reflectante			
Reflectividad	0.9			
Espesor	0.4 mm			
Número de espejos	46			
Área total de los espejos	2.972 m2			
Recepto	or (Cámara de tostado)			
Material	Hierro con un revestimiento negro mate			
Absortividad	0.97			
Espesor	6.35 mm			
Superficie lateral	0.2346 m2			
Longitud	0.34 m			
Velocidad de rotación	1.11 rpm			
Capacidad máxima	5 kg de granos de café			

Tabla 1: Especificaciones del concentrador solar de Fresnel Fuente : Elaboración propia

II | METODOLOGÍA

A continuación, se muestra una serie de pasos realizados en cada prueba experimental:

- 1. Se pesa la muestra de café. En cada prueba experimental se pesó 227 g de café.
- 2. Se introduce la muestra de café en la cámara de tostado.
- 3. Colocar el concentrador cóncavo hacia arriba.
- 4. Instalación de piranómetro y multímetro en el espacio diseñado para éste (una placa de metal perpendicular al plano de apertura del concentrador) y se conecta al multímetro.
- 5. Orientación del concentrador: El concentrador solar siempre debe de estar orientado hacia la posición del Sol. En el hemisferio norte, siempre se debe orientar hacia el sur. Si se está en el hemisferio sur, el concentrador se orienta hacia el norte, también debe de orientarse siguiendo la trayectoria solar (de Este a Oeste), de tal forma que los rayos solares siempre incidan de forma perpendicular al plano de apertura del concentrador.
- 6. Registro de datos. Temperatura en la superficie de la cámara de tostado, la velocidad del viento, la temperatura ambiente y la irradiancia.

Con el fin de caracterizar climáticamente el lugar donde se hicieron todas las pruebas experimentales con el concentrador solar de Fresnel y la cámara de tostado, se muestran en la Tabla 2 los datos meteorológicos medidos cada día.

Lugar: Colonia Santo Domingo, Comayagüela

Departamento: Francisco Morazán

País: Honduras Latitud: 14.1 Altitud: -87.2167

Fecha (dd/mm/aa)	04/03/2022	06/03/2022	09/03/2022 10/03/2022 13/04/22		13/04/22	19/04/22	
Hora	11:08 am a 12:00M	10:24 am a 11:30 am	10:10 am a 11:22 am	10:10 am a 11:26 am 10:31 am a 11:14 am		10:43 am a 12:30 pm	
Temperatura Ambiente Promedio (°C)	29	30	30.5 33.5 31		31	31.2	
Rango de Irradiancia (W/m²)	1,210 – 1,274	1,190 – 1,259	1,209 – 1.250	920 – 1,241	1,173 – 1,230	1,150 – 1,184	
Velocidad Promedio del Viento (m/s)	0.6	0.35	5 0.5 0.35	0.15	0.5		
Humedad Relativa Promedio (%)	34%	36%	38%	38%	30.20%	31.40%	

Tabla 2: Datos meteorológicos medidos en cada prueba experimental

- 7. Procesamiento de los datos recolectados.
- 8. Análisis de los resultados obtenidos.

1 | Equipo utilizado en el trabajo experimental

A continuación, se muestra el equipo utilizado en las pruebas experimentales:

Figura 2: Termómetro digital Infrarrojo FLUKE 62 MAX

Rango de temperatura	- 30 °C a 500 °C
Resistencia	Probado en una caída de 3 metros
Resolución óptica	10:01
Precisión	+1,5 °C o +1,5 % de la lectura (lo que sea mayor)
	IP54 (Tiene una protección frente al polvo o
Clasificación	humedad completas. Además, está protegido contra
	salpicaduras de agua.)
Alimentación	Una sola pila AA

Tabla 3: Especificaciones del Termómetro digital Infrarrojo FLUKE 62 MAX. Fuente: FLUKE

Figura 3: Anemómetro de mano BTMETER BT-100-WM

Rango de velocidad del viento	0.67 mph a 67.1 mph (+/- 5% de las lecturas)
Rango de la temperatura del viento	-10 °C a 45 °C
Resolución	0.1 m/s; 0.2°C
Alimentación	Dos pilas AAA / 1.5 V

Tabla 4: Especificaciones del Anemómetro de mano BTMETER BT-100-WM Fuente: The weather

Figura 4: Balanza digital EK6015

Capacidad	176 oz / 11 lb / 5000 g / 5000 ml
Dimensiones	180cm x 14 cm x 1.8 cm
Unidades	g / ml / oz / lb oz
Auto-Off	60 s
Alimentación	Dos pilas AAA / 1.5 V

Tabla 5: Especificaciones de la Balanza digital EK6015 Fuente: ETEKCITY

Figura 5: Medidor de irradiancia y Multímetro

Factor de conversión del	$1 \text{ mV} = 1 \frac{\text{W}}{\text{m}^2}$
medidor de irradiancia	$1 \text{ m v} = 1 \frac{1}{\text{m}^2}$
Bornes de conexión	3
Tensión en CC	200/2000 mV; 20/200/1000 V
Tensión en CA	200/750 V
Corriente en CC	200/2000 μA; 20/200mA 2/10A
Probador de diodos	Si
Alimentación	Dos pilas AA / 250 V

Tabla 6: Especificaciones del Medidor de irradiancia y Multímetro.

Fuente: Equipo usado en la asignatura de electrónica, Universidad Nacional de la Patagonia San Juan Bosco, Argentina

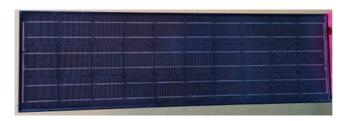


Figura 6: Panel Solar Fotovoltaico

Máxima potencia	43 W
Voltaje máximo de circuito abierto	600 V
Corriente de cortocircuito	3.32 A
Corriente nominal	2.95 A
Voltaje de circuito abierto	18.0 V
Voltaje nominal	14.6 V
Fusibles	5:00 AM
Fire rating	Clase C

Tabla 7: Especificaciones del Panel Solar Fotovoltaico. Fuente: Siemens Solar Industries

Figura 7: Motor de limpia parabrisas automotriz

El motor que hace rotar la cámara de tostado es un motor de limpia parabrisa de un automóvil, que opera a 12 voltios. La energía que requiere el motor para su operación es suministrada por un panel solar fotovoltaico.

III | ANÁLISIS DEL CONCENTRADOR SOLAR DE FRESNEL APLICADO AL TOSTADO DE CAFÉ

1 | Área de apertura del concentrador solar

El área de apertura está dada por la ecuación (1):

$$A_a = \pi r_a^2 \tag{1}$$

Donde r_a es el radio de apertura del concentrador, ver Figura 8. Entonces:

$$A_a = \pi * (0.965 \,\mathrm{m})^2 = 2.9255 \,\mathrm{m}^2$$

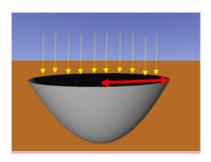


Figura 8: Radio de apertura del concentrador Fuente: Elaboración propia usando el software Tonatiuh

2 | Área del receptor

El receptor (tostadora de café) es un cilindro de longitud L y perímetro p, cuya área A_r está dada por la ecuación (2):

$$A_r = 2\pi r * L = p * L \tag{2}$$

El perímetro p de la cámara de tostado es 0.69 m y la longitud L es 0.34 m, por lo tanto:

$$A_r = 0.69 \,\mathrm{m} * 0.34 \,\mathrm{m} = 0.2346 \,\mathrm{m}^2$$

3 | Factor de concentración geométrico

El factor de concentración geométrico es un parámetro esencial que define el comportamiento de un concentrador solar.

Según (J.A. Duffie y W.A. Beckman (2013)), el factor de concentración geométrico, C, se define como la relación entre el área de apertura, A_a , y el área del receptor, A_r .

$$C = \frac{A_a}{A_r} \tag{3}$$

La ecuación (3), satisface la condición de que A_r contiene los rayos solares colectados por el concentrador y reflejados por el sistema. Con los valores de las áreas calculadas anteriormente, tenemos:

$$C = \frac{A_a}{A_r} = \frac{2.9255 \,\mathrm{m}^2}{0.2346 \,\mathrm{m}^2} = 12.47$$

En la Tabla 8 se muestran los diferentes colectores solares en función del factor o razón de concentración, así como el rango de temperaturas que se pueden alcanzar con dicho colector.

Tipo de colector	Croquis	Factor de Concentración	Rango de Temperatura alcanzada (°C)
Colector Parabólico Compuesto		1 < C < 15	70 < T < 300
Colector Cilíndrico Parabólico		15 < C < 40	70 < T < 350
Disco Parabólico	0	100 < C < 1000	70 < T < 1500
Torre Central	J ,,,,,,,	100 < C < 1500	150 < T < 1500

Tabla 8: Clasificación de los colectores en función del factor de concentración Fuente: Adaptado de Velasco, 2012, Diseño de concentrador solar cilíndrico parabólico para aplicaciones rurales en Paraguay.

Como el concentrador solar en estudio tiene un factor de concentración de 12.47, según la Tabla 8 está en el rango de un colector parabólico compuesto, cuyo valor está entre 1 y 15, alcanzándose temperaturas entre 70 °C y 300 °C.

Con este valor del factor de concentración, nos aseguramos de que el concentrador estudiado proporciona una temperatura óptima (desde 180 °C a 240 °C) para tostar los granos de café.

4 | Eficiencia óptica del concentrador

Según (J.A. Duffie y W.A. Beckman (2013)) la eficiencia óptica del concentrador está dada por la ecuación (4):

$$\eta_{op} = \rho * \gamma * \alpha \tag{4}$$

Donde ρ es la reflectancia del espejo de Fresnel utilizado, γ es el factor de intercepción y α es la absortividad del receptor.

Para (J.A. Duffie y W.A. Beckman (2013)), los concentradores anidólicos tienen la capacidad de reflejar toda la radiación incidente en el receptor, por lo tanto, la ecuación (4) se reduce a la ecuación (5):

$$\eta_{op} = \rho * \alpha \tag{5}$$

Para el concentrador que estamos analizando, según las especificaciones de la Tabla 1, $\rho = 0.9$ y $\alpha = 0.97$, por lo tanto, la eficiencia óptica es:

$$\eta_{op} = \rho * \alpha = 0.9 * 0.97$$
 $\eta_{op} = 0.873$

5 | Pérdidas de energía

5.1 | Pérdida de calor por radiación

Según (Escudero (2006)), la temperatura alcanzada por el receptor a causa de la concentración de la radiación solar reflejada por el concentrador se define como T_H , por lo que, la pérdida de energía por

radiación, q_R , se presenta de la siguiente forma:

$$q_R = \varepsilon \sigma A_T \left(T_H^4 - T_{Cielo}^4 \right) \tag{6}$$

Donde ε es la emisividad del receptor, que en este caso es $\varepsilon=0.97$, $\sigma=5.667x10^{-8}\frac{W}{m^2K^4}$ es la constante de Stefan-Boltzmann, A_T es el área de la cámara de tostado y la temperatura del cielo se presenta como:

$$T_{Cielo} = 0.0552T_A^{1.5} (7)$$

Donde T_A es la temperatura ambiente en Kelvin.

5.2 | Pérdida de calor por convección

Escudero (2006) define la pérdida de calor por convección de la siguiente forma:

$$q_C = h_H A_T (T_H - T_A) \tag{8}$$

Donde h_H es el coeficiente de convección para la transferencia de calor, A_T es el área de la cámara de tostado y T_H es la temperatura alcanzada en esta. El coeficiente de convección h_H depende de la velocidad del viento del lugar donde se realiza el experimento. Para superficies lisas, el coeficiente de convección para la transferencia de calor está dado por:

$$h_H = 7.120(v_{20})^{0.775} + 5.129 e^{-0.6v_{20}}$$
 (9)

donde v₂₀ es la velocidad del aire en m/s, a una temperatura de 293 K (20 °C), por lo tanto:

$$v_{20} = 293 \left(\frac{v}{T}\right) \tag{10}$$

siendo v la velocidad media del aire a una temperatura T.

Se realizó el cálculo para las dos pruebas experimentales donde se obtuvo el mejor nivel de tueste, tanto nivel medio como nivel oscuro.

Los resultados del día 9 de marzo de 2022 se presentan en la Tabla 9 y los resultados del día 19 de abril de 2022 se presentan en la Tabla 10.

Se puede observar que el 9 de marzo el valor de la irradiancia fue mayor; por lo tanto, las pérdidas de energía por radiación también fueron mayores. De igual forma, la velocidad del viento fue mayor; por lo tanto, las pérdidas por convección fueron mayores.

Hora	$T_H [^{\circ}C]$	$I\left[\frac{w}{m^2}\right]$	$V_{viento}\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	T_{cielo} (K)	V ₂₀ (m/s)	$h_H(W/m^2 K)$	$q_R(W)$	$q_C(W)$
10:10	56.8	1,209	1.9	291.141	1.837	13.111	59.911	82.436
10:14	106.5	1,219	0.4	291.141	0.387	7.477	174.831	134.187
10:18	145.5	1,234	0.8	291.141	0.774	9.06	302.926	245.491
10:22	157.6	1,235	1.6	291.141	1.547	12.013	350.698	359.601
10:26	181.7	1,236	0.7	291.141	0.677	8.679	458.601	308.87
10:30	188.4	1,237	1	291.141	0.967	9.808	491.817	364.485
10:34	191.8	1,238	1.1	291.141	1.064	10.178	509.236	386.352
10:38	197.4	1,239	0.9	291.141	0.87	9.436	538.771	370.568
10:42	199.9	1,239	0.7	291.141	0.677	8.679	552.302	345.926
10:46	206.4	1,240	1.1	291.141	1.064	10.178	588.499	421.214
10:50	211.6	1,240	1.6	291.141	1.547	12.013	618.537	511.783
10:54	223	1,241	1.1	291.141	1.064	10.178	687.858	460.852
10:58	226.2	1,242	0.8	292.583	0.771	9.05	706.346	414.434
11:02	227.2	1,243	0.4	292.583	0.386	7.471	712.782	343.894
11:06	227.4	1,243	2.2	292.583	2.12	14.185	714.074	653.603
11:10	233.4	1,240	1.4	292.583	1.349	11.264	753.558	534.829
11:14	234	1,245	0.9	292.583	0.867	9.425	757.585	448.847
11:18	235.4	1,250	0.9	292.583	0.867	9.425	767.035	451.942
11:22	238.9	1,250	0.9	292.583	0.867	9.425	791.006	459.681

Tabla 9: Pérdidas de energía del día 9 de marzo del año 2022 Fuente: Elaboración propia

5.3 | Potencia y eficiencia del concentrador solar de Fresnel

Según (Escudero (2006)), considerando que los rayos del sol son paralelos al eje del concentrador solar de Fresnel, podemos calcular la velocidad de transferencia de calor o potencia térmica de entrada (P_e) con la ecuación (11):

$$P_e = IA_a \tag{11}$$

Donde I es la irradiancia solar en W/m² y A_a es el área de apertura del concentrador en m², calculada con la ecuación (1).

Considerando que la potencia solar concentrada en el receptor está dada por la radiación solar reflejada

Hora	$T_H [^{\circ}C]$	$I\left[\frac{w}{m^2}\right]$	$V_{viento}\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	T _{cielo} (K)	V ₂₀ (m/s)	$h_H(W/m^2 K)$	$q_R(W)$	$q_{C}\left(\mathbf{W}\right)$
10:47	108.6	1,164	0.3	291.717	0.386	7.037	180.065	129.09
10:51	124	1,167	0.2	291.717	0.29	6.559	226.952	144.018
10:55	134.5	1,169	0.3	291.717	0.193	7.037	262.211	171.845
10:59	142.3	1,170	0.2	291.717	0.29	6.559	290.229	172.175
11:03	162	1,170	0.5	291.717	0.193	7.889	368.363	243.554
11:07	163	1,171	0.3	291.717	0.483	7.037	372.623	218.892
11:11	166.8	1,176	0.4	291.717	0.29	7.475	389.083	239.185
11:15	170	1,180	0.3	291.717	0.386	7.037	403.279	230.447
11:19	181	1,183	0.3	291.717	0.29	7.037	454.478	248.605
11:24	184	1,184	0.3	291.717	0.29	7.032	467.241	253.396
11:30	186	1,184	0.3	293.161	0.289	7.032	477.153	256.696
11:34	160	1,150	1.7	293.161	0.289	12.35	358.067	375.498
11:38	169	1,150	0.3	293.161	1.636	7.032	396.948	228.65
11:42	172	1,160	0.6	293.161	0.289	8.28	410.447	275.043
11:46	185	1,165	0.5	293.161	0.578	7.882	472.181	285.879
11:50	186	1,180	0.2	293.161	0.481	6.552	477.153	239.172
11:54	187.5	1,150	0.3	293.161	0.192	7.028	482.779	259.006
11:58	189	1,150	0.5	294.607	0.288	7.876	490.372	293.029
12:02	190	1,151	0.5	294.607	0.48	7.876	495.475	294.877

Tabla 10: Pérdidas de energía del día 19 de abril del año 2022 Fuente: Elaboración propia

por el colector en la tostadora, se puede calcular la potencia absorbida por la cámara de tostado, P_a , utilizando la ecuación (12):

$$P_a = P_e \eta_{op} \tag{12}$$

Donde P_e es la potencia térmica de entrada del concentrador y η_{op} es la eficiencia óptica del concentrador.

Así mismo, según el análisis del concentrador de (Escudero (2006)), despreciando las pérdidas del colector, el balance energético de la cámara de tostado está dado por la ecuación (13):

$$P_u = P_a - q_R - q_C \tag{13}$$

Donde P_u es la potencia útil en la cámara de tostado, P_a es la potencia absorbida por esa, q_R es la

pérdida de calor por radiación y q_C es la pérdida de calor por convección.

Luego, definimos la eficiencia instantánea del concentrador como la relación entre la potencia útil en la cámara de tostado y la potencia de entrada del concentrador tal y como se expresa en la ecuación (14):

$$\eta = \frac{P_u}{P_e} \tag{14}$$

Los valores calculados de la potencia y eficiencia del concentrador solar de Fresnel aplicado en el tostado de café se muestran en la Tabla 11

I (W/m ²)	P_e (W)	P_a (W)	q_R (W)	$q_{C}\left(\mathbf{W}\right)$	P_u (W)	η	%η
1,240	3,277.07	2,801.90	588.499	421.214	1,792.18	0.547	54.69
1,240	3,277.07	2,801.90	618.537	511.783	1,671.58	0.51	51.01
1,241	3,279.72	2,804.16	687.858	460.852	1,655.45	0.505	50.48
1,242	3,282.36	2,806.42	706.346	414.434	1,685.64	0.514	51.35
1,243	3,285.00	2,808.68	712.782	343.894	1,752.00	0.533	53.33
1,243	3,285.00	2,808.68	714.074	653.603	1,441.00	0.439	43.87
1,240	3,277.07	2,801.90	753.558	534.829	1,513.51	0.462	46.18
1,245	3,290.29	2,813.20	757.585	448.847	1,606.76	0.488	48.83
1,250	3,303.50	2,824.49	767.035	451.942	1,605.52	0.486	48.6
1,250	3,303.50	2,824.49	791.006	459.681	1,573.81	0.476	47.64

Tabla 11: Potencia y eficiencia del concentrador para el día 9 de marzo de 2022 Fuente: Elaboración propia

De acuerdo con la Tabla 11, la potencia útil media fue de 1,629.7 W y la eficiencia instantánea promedio del concentrador fue de 49.03 %.

IV | RESULTADOS Y DISCUSIÓN DEL CAFÉ TOSTADO USANDO EL CON-CENTRADOR SOLAR DE FRESNEL

1 | Curvas de tostado

Según (Grind (2020)), "llevar un control de las variables que influyen en el tueste de café puede proporcionar a los tostadores información valiosa sobre el funcionamiento de este proceso. Dado que el calor es un elemento importante durante el tueste, la temperatura es una variable que es importante analizar.

Es por eso que crear una curva de tueste para llevar un registro de estas temperaturas puede ayudar a los tostadores a predecir con mayor exactitud el resultado de un tueste."

1.1 | Curva de tostado para un tueste medio

En la Tabla 12 se muestra un resumen de los parámetros del día 19 de abril de 2022 y en la Figura 9 se muestra la curva de tostado para un tueste nivel medio.

$I\left[\frac{w}{m^2}\right]$	T [°C]	$V_{viento}\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	t_{tueste} [min]	$\%W_{perdido}$	Nivel de Tueste
1,150 - 1,184	45 - 206	0.1 - 0.9	107	19.47%	Medio

Tabla 12: Parámetros del día 19 de abril de 2022 Fuente: Elaboración propia

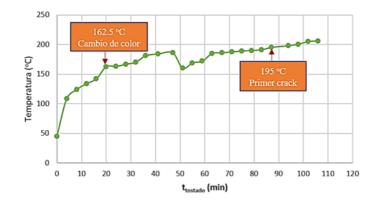


Figura 9: Curva de tostado de un tueste medio Fuente: Elaboración propia

En este tueste solo se escuchó el primer crack, que sucede cuando los granos de café se dilatan y se abren debido al aumento de la temperatura y de la presión, proceso mediante el cual se libera el vapor y el dióxido de carbono atrapados en su interior. Por eso se logró un tueste de nivel medio como se muestra en la Figura 10.

Figura 10: Café con nivel de tueste medio Fuente: Elaboración propia

1.2 | Curva de tostado para un tueste oscuro

En la Tabla 13 se muestra un resumen de los parámetros del día 9 de marzo de 2022 y en la Figura 11 se muestra la curva de tostado para un tueste nivel oscuro y en la Figura 12 podemos ver los granos de café tostados.

$I\left[\frac{w}{m^2}\right]$	T [°C]	$V_{viento}\left[rac{\mathrm{m}}{\mathrm{s}} ight]$	t_{tueste} [min]	$%W_{perdido}$	Nivel de Tueste	
1,209 - 1,250	56.8 - 236	0.1 - 0.9	74	24.04%	Oscuro	

Tabla 13: Parámetros del día 9 de marzo de 2022 Fuente: Elaboración propia

Para el nivel de tueste oscuro si fue necesario llegar al segundo crack. En el minuto 36 se escuchó el primero, justo cuando alcanzó 206 °C y en el minuto 44 se escuchó el segundo, cuando la temperatura en la cámara de tostado era de 223 °C.

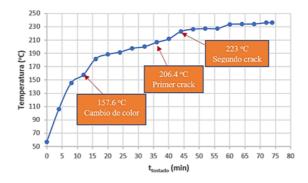


Figura 11: Curva de tostado de un tueste oscuro Fuente: Elaboración propia

En la Figura 11 se puede observar que al minuto 60 la curva de tostado empieza a aplanarse, es por eso, que lo ideal en el tueste oscuro es escuchar el segundo crack y terminar el proceso de tostado. Ya que, si se deja más tiempo el grano de café pierde aroma, desprende sus aceites y su gusto es a grano quemado.

Figura 12: Café con nivel de tueste oscuro Fuente: Elaboración propia

V | USO DE REDES NEURONALES ARTIFICIALES PARA ESTIMAR LAS TEMPERATURAS EN LA CÁMARA DE TOSTADO

En este caso como entrada de la red neuronal se tiene la Irradiancia en W/m² y como salida dos o tres temperaturas en °C medidas en el exterior de la cámara de tostado, esto es porque unos días se registraron dos temperaturas y otros días tres temperaturas, por lo tanto, nos quedaría el perceptrón de la Figura 13.

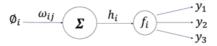


Figura 13: Perceptrón multicapas usado con el concentrador solar de Fresnel Fuente: Elaboración propia usando Power Point

Donde ϕ_i es la irradiancia, f_i es la función de activación sigmoidal que está dada en la ecuación 15, y_1 es la temperatura 1, y_2 es la temperatura 2 y y_3 es la temperatura 3.

$$fi = \frac{1}{1 + e^{-x}} \tag{15}$$

En la figura 14 y figura 15 se muestra la arquitectura para la estimación de temperaturas en el caso del concentrador solar en estudio.

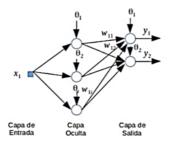


Figura 14: Arquitectura utilizada para la estimación de dos temperaturas Fuente: Elaboración usando Libreoffice draw

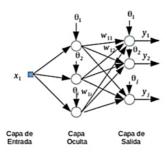


Figura 15: Arquitectura utilizada para la estimación de tres temperaturas Fuente: Elaboración usando Libreoffice draw

1 | Metodología

- En cada prueba experimental, se registraron 2 ó 3 temperaturas en distintas partes de la cámara de tostado.
- 2. Se seleccionó el modelo de Redes Neuronales Artificiales ya que anteriormente este modelo se ajustó bastante bien al estudio de un concentrador solar de doble reflexión en el artículo "Uso de redes neuronales para la obtención de imágenes termográficas en el absorbedor de un concentrador solar de Fresnel de doble reflexión, a partir de los registros de temperatura en el absorbedor" de (M.A. Flores, F. Serrano, y C. Cardena (2021)).
- 3. Se utilizó el programa GNU Octave versión 4.2.2 y computadora HP con procesador Intel Centrino, para realizar la estimación de temperaturas en la cámara de tostado utilizando el modelo de Redes Neuronales.

2 | Resultados usando el modelo de Redes Neuronales (NN)

El rendimiento de este modelo se puede comprobar calculando el error medio cuadrado (RMSE, por sus siglas en inglés) mediante la ecuación 16.

$$RMSE = \frac{1}{N} \sqrt{\sum_{n=1}^{N} |y_{estimado} - y|^2}$$
 (16)

Donde N es el número de muestras, y es la temperatura medida en la cámara de tostado y $y_{estimado}$ es la temperatura estimada por el modelo RNA.

El error cuadrático medio (RMSE) mide el error que hay entre dos conjuntos de datos. Es decir, compara un valor estimado y un valor conocido.

En la Figura 16 se observa una buena estimación de la temperatura utilizando el modelo de redes neuronales, la línea roja representa los datos reales medidos el día 10 de marzo del año 2022 y la línea en azul representa la estimación de la temperatura usando redes neuronales. El RMSE para estos datos es de 0.436193 °C.

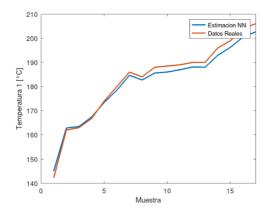


Figura 16: Modelo de Redes Neuronales (NN) para la Temperatura 1 Fuente: Elaboración propia

VI | CONCLUSIONES

- 1. De acuerdo con los resultados obtenidos se considera que el tostador solar estudiado es funcional y que su efectividad depende de las condiciones climáticas. Su efectividad es mayor en lugares que presenten la mayor heliofanía; en Honduras, por estar ubicado en la zona tropical, todo el país tiene altos índices de heliofanía, siendo la Zona Sur la que presenta el mayor brillo solar, seguido de la Zona Occidental Sur. (ver anexo)
- 2. Para alcanzar la temperatura óptima de tostado de granos de café (aproximadamente 210 °C), la radiación solar según lo observado debe tener un valor mínimo de 1,100 W/m².
- Entre mayor es la velocidad del viento, mayor es la pérdida por convección en la cámara de tostado, por lo tanto, los tiempos de tostado son mayores.
- 4. La potencia media del concentrador solar estudiado es de 1,629.7 W y su eficiencia media es de 49.03 %.
- 5. El modelo que más se ajusta al comportamiento de la temperatura en la cámara de tostado, según la irradiancia en ese momento, es el modelo de Redes Neuronales Artificiales, lográndose un error cuadrado de 0.436193°C, en cambio con el modelo autorregresivo, ARX, se logró un error cuadrado de 12.9369 °C.

VII | RECOMENDACIONES Y TRABAJO A FUTURO

- 1. Incorporar un sistema de visor a la cámara de tostado o un sistema que permita tomar muestras, para observar las distintas fases del proceso de tueste de los granos de café.
- Adicionar un dispositivo que permita escuchar con precisión los cracks en el proceso de torrefacción del café.
- Adicionar un mecanismo automático de seguimiento del sol, cuidando de que los rayos incidan de forma perpendicular en el área de apertura del concentrador y lograr así, una mejor captación de la radiación solar.

- 4. La cámara de tostado puede ser aislada térmicamente, con un material transparente a la radiación solar, en forma de cuboide rectangular ya sea de plástico laminado o de vidrio, para reducir las pérdidas por convección.
- 5. Mejorar el mecanismo que permite regular la velocidad de rotación de la cámara de tostado, ya que la rotación del cilindro determina el tiempo durante el cual están sometidos los granos de café a la radiación solar concentrada en la cámara de tostado. Si la revolución es baja, el tueste es más rápido. Se pueden hacer pruebas variando ese parámetro y así poder obtener el orden de revoluciones por minuto más indicado.
- 6. Hacer simulaciones en un estudio futuro que permita estudiar la factibilidad a escala industrial, ya que se cuenta con resultados experimentales que pueden servir como base para realizar las adaptaciones.

VIII | ANEXOS

Valores mínimos, máximos y promedios de horas de heliofanía mensuales por zona en Honduras por zona en Honduras.

Zona	Enero				Febrero)	Marzo		
	Min	Max	Prom	Min	Max	Prom	Min	Max	Prom
Norte	6.0	6.6	6.3	6.4	8.0	7.2	7.2	8.0	7.6
Centro	5.8	8.2	7.0	6.6	8.8	7.7	7.0	9.0	8.0
Sur	7.4	9.4	8.4	8.2	9.8	9.0	8.6	9.6	9.1
Occidente Sur	6.4	8.8	7.6	6.6	9.2	7.9	7.6	9.0	8.3
Occidente Norte	6.0	6.6	6.3	6.4	7.4	6.9	7.4	8.0	7.7
Insular	6.3	6.7	6.5	7.8	8.1	8.0	7.8	8.1	8.0

Zona	Abril			Mayo			Junio			Julio		
	Min	Max	Prom	Min	Max	Prom	Min	Max	Prom	Min	Max	Prom
Norte	6.8	7.8	7.3	6.0	7.8	6.9	5.6	7.6	6.6	5.0	7.0	6.0
Centro	6.8	7.9	7.4	6.0	7.0	6.5	5.4	6.6	6.0	4.8	7.4	6.1
Sur	7.6	8.8	8.2	6.4	7.4	6.9	6.2	7.2	6.7	5.6	8.4	7.0
Occidente Sur	6.8	8.2	7.5	5.8	7.2	6.5	5.4	6.4	5.9	6.8	7.7	7.3
Occidente Norte	6.8	7.8	7.3	6.0	7.2	6.6	6.2	6.7	6.5	6.8	7.2	7.0
Insular	7.8	8.1	8.0	7.3	7.8	7.6	7.2	7.7	7.5	6.8	6.9	6.9

Zona	Agosto				Septiemb	ore	Octubre		
	Min	Max	Prom	Min	Max	Prom	Min	Max	Prom
Norte	5.8	7.6	6.7	6.0	7.4	6.7	5.4	6.8	6.1
Centro	5.8	7.5	6.7	5.8	6.3	6.1	5.4	7.0	6.2
Sur	6.4	8.2	7.3	5.8	7.0	6.4	7.0	7.6	7.3
Occidente Sur	6.4	7.4	6.9	5.0	6.2	5.6	5.0	6.7	5.9
Occidente Norte	6.8	7.2	7.0	5.8	6.5	6.2	5.4	6.0	5.7
Insular	7.2	7.7	7.5	6.9	7.5	7.2	6.2	7.0	6.6

Zona	Noviembre				Diciemb	re	Anual		
	Min	Max	Prom	Min	Max	Prom	Min	Max	Prom
Norte	4.8	5.6	5.2	5.0	5.8	5.4	6.0	7.0	6.5
Centro	4.9	7.6	6.3	5.2	7.8	6.5	5.8	7.6	6.7
Sur	7.0	8.6	7.8	6.8	9.2	8.0	6.8	8.4	7.6
Occidente Sur	5.2	7.6	6.4	5.4	8.2	6.8	6.5	7.6	7.1
Occidente Norte	4.8	6.0	5.4	5.2	6.2	5.7	6.4	6.9	6.7
Insular	5.2	5.3	5.3	5.6	5.9	5.8	6.8	7.2	7.0

| REFERENCIAS

Coll, C. V. (2017). Diseño y construcción de un concentrador lineal fresnel. Valparaiso.

Escudero, L. P. (2006). Estudio teórico y de viabilidad de la radiación solar concentrada en un motor stirling. trabajo final de carrera en ingeniería industrial. Escuela Técnica Superior de Ingeniería Industrial de Barcelona.

Grind, P. D. (2020, 10 de Marzo). Explorando la historia de la producción de café de honduras.

Descargado de https://perfectdailygrind.com/es/2020/03/10/explorando-la-historia-de-la-produccion-de-cafe-de-honduras/

J.A. Duffie, y W.A. Beckman. (2013). Solar engineering of thermal processes. Hoboken: John Wiley & Sons, Inc. M.A. Flores, F. Serrano, y C. Cardena. (2021). Uso de redes neuronales para la obtención de imágenes termográficas en el absorbedor de un concentrador solar de fresnel de doble reflexión, a partir de los registros de temperatura en el absorbedor. ASADES.

Muerza, A. (2012, 23 de Febrero). Siete formas de conseguir energía solar. Descargado de https://www.consumer.es/medio-ambiente/siete-formas-de-conseguir-energia-solar.html

R. Leutz, y A. Suzuki. (2001). Design and performance of solar concentrators.

Velasco, C. (2012). Diseño de captador solar cilíndrico parabólico para aplicaciones rurales en paraguay.