

REF-UNAH v12i1, 1-36 (2024) • DOI: https://doi.org/10.5377/ref.v12i1.19423

Formaciones geológicas en Tegucigalpa a partir de gravedad de Bouguer utilizando polígonos de Talwani

Geological formations in Tegucigalpa from Bouguer anomalies using Talwani polygons.

C. TENORIO¹, A. SALGADO²

Recibido: 31 de julio de 2024 / Aceptado: 22 de agosto de 2024

¹Departamento de Física de la Tierra, Escuela de Física. Universidad Nacional Autónoma de Honduras. carlos.tenorio@unah.edu.hn

²Departamento de Física de la Tierra, Escuela de Física. Universidad Nacional Autónoma de Honduras. adriana.salgado@unah.edu.hn **RESUMEN** Exploramos la estructura geológica 2D bajo dos transectos

de entre 20 y 25 km de estaciones gravimétricas a través de la ciudad de Tegucigalpa, en dirección O-E y NE-SO, hasta una profundidad máxima de 1,800 m mediante cálculos de gravedad de Talwani para polígonos de forma arbitraria. Para este propósito, producimos tablas de anomalías de Bouguer para el cuadrángulo de Tegucigalpa, calculadas a partir de un estudio previo con valores mejorados para correcciones de topografía y de gravedad normal. Tanto las geometrías de los polígonos como sus densidades aparentes fueron ajustadas dentro de las restricciones proporcionadas por el mapeo geológico, la estratigrafía y secciones transversales disponibles para el área de estudio. La gravedad residual positiva encontrada sobre el centro de ambos perfiles sugiere ya sea un cuerpo ígneo intrusivo o bien una masa de hasta 1500 metros de grosor de lutita y arenisca alterada (formación Jkhg), subyacente a depósitos sedimentarios (Kvn) de 500 a 600 m de grosor. Los valores negativos de gravedad residual se interpretan como resultado del engrosamiento de las tobas volcánicas del Terciario (Tpm) hacia los extremos de ambos perfiles, hasta profundidades de 500 a 1100 m. Sin perder de vista las limitaciones e incertidumbres intrínsecas a modelos de geología subsuperficial construidos usando únicamente datos de gravedad residual de Bouguer, este estudio plantea una primera exploración gravimétrica de la compleja estratigrafía bajo Tegucigalpa hasta profundidades de 1900 m. sobre longitudes de hasta 25km.

ABSTRACT Two 20-to-25-km-long gravity transects oriented W-E and

NE-SW across Tegucigalpa were analyzed for cross-sectional 2D geological structure down to depths of 1,800 meters, by means of forward modelling of residual gravity using Talwani's gravity calculations for arbitrarily shaped polygons. For this purpose, we produced tables of Bouguer anomalies for the Tegucigalpa quadrangle by refining values from a previous study with improved terrain and normal gravity corrections. Both polygon geometries and apparent densities were adjusted within the constrains provided by surface geology, stratigraphy and cross sections available for the study area. Positive residual gravity found above both profile's midsection suggests either an intrusive pluton or mass of altered lutite and sandstone (Jkhg formation), up to 1.5km thick, underlying a 600-m-thick bed of sedimentary deposits (Kvn). Gravity lows are interpreted as the thickening of Tertiary tuff deposits (Tpm) over the edges of the profiles, to a depth of about 500 to 1100 m. Notwithstanding

* Esta obra está bajo una licencia Creative Commons Reconocimiento - NoComercial 4.0 Internacional 🔿 🛈 S

* This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 🔿 🕀 😒

the non uniqueness and uncertainties inherent to sub-surface models derived from residual Bouguer gravity alone, this study represents a first attempt at exploring the complex subsurface geology below Tegucigalpa down to 1900m over lengths up to 25 km, using the gravity method.

PALABRAS CLAVES

Gravimetría, GPS, Anomalías de Bouguer, anomalías residuales, perfil gravimétrico, Geología de Honduras

KEYWORDS

Gravimetry, GPS, Bouguer gravity, residual anomalies, gravimetric profile, Honduras geology

I | INTRODUCCIÓN

El conocimiento de la aceleración de la gravedad sobre 1300 km² del cuadrángulo de Tegucigalpa, obtenida por (Moncada y Canales, 2011) en el año 2007 para 125 estaciones dentro del casco urbano y sus alrededores, es aplicado en este estudio para explorar la geología subsuperficial, hasta 1 km de profundidad, a lo largo de los transectos que se muestran en las figuras 6 y 8. La gravedad observada g_{obs} , aparece en la primera columna de las tablas 1,2, y 3, calculada por (Moncada y Canales, 2011) a partir de lecturas de un instrumento Lacoste & Roemberg GRAVITON EG, y referidas a la estación NOAA-NGS de Tegucigalpa, localizada en los predios del Observatorio Astronómico de la UNAH donde $g = 978063.469 \pm 0.004$ mGals (Service y Survey, s.f.). Los detalles de la campaña y el procesamiento para corregir efectos de mareas y deriva instrumental pueden revisarse en (Moncada y Canales, 2011). Nuestra contribución a dicha base de datos consistió en recalcular, para los 125 puntos, la gravedad normal debida al elipsoide con la fórmula actualizada del sistema de referencia geodésico de 1984, dada por la ecuación 3 (GRIDS, 2014), mejorando así los cálculos realizados con la fórmula del GRS67 utilizada en (Moncada y Canales, 2011). En la sección III se describen en más detalle las correcciones aplicables a los valores observados de gravedad absoluta gobs para remover de ella todos los efectos conocidos que contribuyen a su valor y así obtener las *anomalías de Bouguer*, Δ_{g} , que aparecen en la última columna de las tablas 1,2, y 3 y que reflejan la contribución de cuerpos geológicos desconocidos a los valores de la gravedad absoluta gobs en la primera columna de dichas tablas. Las correcciones a la aceleración de la gravedad por efectos de topografía también fueron mejoradas en el presente trabajo; en el estudio original se usó el sistema de (Hammer, 1939) con un radio máximo de 21,943 m alrededor de cada estación, utilizando el modelo de elevación digital con resolución de 90 m. de la misión del transbordador espacial SRTM (Van Zyl, 2001). En esta ocasión, utilizamos el modelo global SRTM2gravity de (Hirt y cols., 2019) que utiliza técnicas espectrales de cálculo directo para la ley de gravitación de Newton aplicada a la topografía y la placa de Bouguer, a nivel global, para encontrar las correcciones sobre una resolución de 90 m sobre la mayor parte del globo, con exactitud de 0.2mGal.

Concluimos este trabajo con una exploración de la composición del subsuelo y de las densidades de los cuerpos estratigráficos hasta una profundidad de hasta 2 km bajo dos perfiles Este-Oeste AA' y Noreste-Sudoeste BB' de 25 y 17 km de longitud, respectivamente, dentro de la ciudad de Tegucigalpa, que se muestra en las figuras 6 y 8. Como la gravedad encontrada contiene contribuciones de cuerpos de dimensiones mucho mayores que los 2 km de grosor bajo la superficie de nuestro estudio (por ejemplo,la corteza terrestre, o heterogeneidades en el manto superior, como losas tectónicas separadas de la zona de subducción mesoamericana), estos efectos regionales deben removerse de las anomalías de Bouguer Δ_g encontradas después de hacer las correcciones, véase sección VI. Entonces procedemos

a estimar de manera simultánea, por prueba y error, tanto las densidades como la geometría en dos dimensiones de los cuerpos geológicos responsables de las anomalías encontradas. Para ello utilizamos el método de polígonos de Talwani (Hubbert, 1948) y (Talwani, Worzel, y Landisman, 1959) descrito en la sección VII e implementado con el software GRAVMAG (Burger, Sheehan, Jones, y Burger, 2006), haciendo uso de información a priori tomada de la carta geológica del cuadrángulo de Tegucigalpa elaborada por (R. Rogers, 1990).

II | MARCO TECTÓNICO Y GEOLÓGICO DEL ÁREA DE ESTUDIO

El cuadrángulo de Tegucigalpa se extiende entre los $14^{\circ}00'$ y $14^{\circ}10'$ de Latitud Norte y los $87^{\circ}00'$ y 87° 15' de Longitud Oeste y descansa dentro de la provincia tectónica del bloque Chortís, interpretado por (Gordon, 1992) como una ancha zona de deformación que responde a la interacción de las placas de Norte América y El Caribe, el cual se originó probablemente en el suroeste de México como un bloque de corteza continental (Donnelly, Horne, Finch, y López-Ramos, 1990). Actualmente, el límite norte del bloque Chortís está delimitado por la falla Jocotán, y se extiende hasta la península Santa Elena en Costa Rica (Mickus, 2003). Dataciones de plutones metaígneos de la formación Quebrada Seca por (Horne, Clark, y Pushkar, 1976) indican una edad de aproximadamente 300 Ma para dicha formación y sugieren que al menos ocurrió metamorfismo del Paleozoico en el bloque Chortís, y que éste, por consiguiente, es anterior al Mesozoico (Gordon, 1992). Este bloque en América Central septentrional conforma la única parte emergente de corteza continental del Precámbrico al Paleozoico en la placa del Caribe hoy en día (R. D. Rogers, Mann, Scott, y Patino, 2007), (R. D. Rogers, Mann, Scott, y Patino, 2007). Estudios regionales basados en información gravimétrica (Ander, Aiken, y Maricio, 1991; Mickus, 2003) y reflexión sísmica (Kim, Matumoto, y Latham, 1982) coinciden que que el grosor de esta corteza en la parte central de Honduras es de 35km a 37 km, donde las anomalías de Bouguer tienen valores mínimos (alrededor de -90 mGal). En el cuadrángulo de Tegucigalpa y alrededores, donde se hizo la campaña de gravimetría de (Moncada y Canales, 2011), el lecho rocoso consiste de corteza Paleozoica continental, gneiss y esquistos cubiertos por una mezcla de basamentos clásticos y carbonatados del Cretáceo (R. D. Rogers, Mann, y Emmet, 2007), pero tanto en zonas de Tegucigalpa como en gran parte de la región centro occidental del país, se desconoce la distribución de rocas paleozoicas por estar la región cubierta por una capa de ignimbritas del Mioceno medio de hasta 2 km de grosor (R. D. Rogers, Mann, y Emmet, 2007), (Mickus, 2003). Tegucigalpa descansa asimismo sobre una meseta que, dentro del bloque Chortís, se extiende desde Guatemala hasta Nicaragua con elevaciones >1km de topografía montañosa e irregular, lo suficientemente distante de los márgenes de placa para considerarse anómala (R. D. Rogers, Kárason, y van der Hilst, 2002). Estos autores proponen que el levantamiento del norte de Centroamérica es la respuesta de la corteza continental boyante del bloque Chortís ante el empuje de astenósfera emergente causado por la ruptura y hundimiento de una losa de la placa de Cocos bajo la placa del Caribe, proceso que debió comenzar hace 10 Ma y terminó en el Mioceno tardío. Imágenes generadas por estudios de tomografía global de (Kárason y Van Der Hilst, 2000) muestran esta losa separada como una zona de altas velocidades a profundidades de hasta 1000 km, más allá de los terremotos más profundos de la zona de Wadatti-Benioff. El levantamiento de la zona central de Honduras como resultado del empuje de la astenósfera explica de esta manera la evolución del paisaje de Tegucigalpa con sus cumbres planas concordantes, resultado de la erosión de la meseta.

A continuación, se describen los principales formaciones y grupos de la geología del cuadrángulo de Tegucigalpa, descritos por (R. Rogers, 1990), desde la más antigua, el Grupo Honduras Jkhg del Jurásico Superior (Carpenter, 1954), hasta aluvión del cuaternario. En este estudio, partiremos de la

información de dicha carta geológica y de las restricciones que ésta sugiere en cuanto a estratigrafía, datación relativa y composición litológica de las formaciones, para asignar densidades aparentes a las mismas, y se modelará la estructura geológica bidimensional de dos perfiles selectos (figura 6), construyendo polígonos de Talwani hasta profundidades de 1.8 km que reproduzcan lo más cerca posible los valores de las anomalías de Bouguer calculadas en base a datos gravimétricos. En la figura 1 se muestra dicha estratigrafía, tomada de (R. Rogers, 1990), basada en observaciones de campo y trabajos previos en zonas adyacentes:

- Grupo Honduras (JKhg): La composición litológica que se encuentra en esta formación es principalmente de lutitas y areniscas de tonalidades verdes oscuros y morados, que poseen una notable presencia de calcita. Además, se observan coladas de andesitas y depósitos piroclásticos.
- Grupo Valle de Ángeles:
 - 1. Formación de Villa Nueva (Kvn): Consta de depósitos sedimentarios como lutitas, areniscas, conglomerados de cuarzo y clástos de rocas (metamórficas, volcánicas y caliza) con color rojo claro o marrón hasta café claro. Los conglomerados tienen guijarros subangulares a subredondeados, así como algunas tobas de riolita.
 - 2. Formación de Río Chiquito (Krc): Se encuentran estratos que contienen lutitas, limonitas, areniscas y algunas capas de conglomerado de cuarzo, pero los clásticos son de grano fino y el color es morado rosado oscuro, así como algunos estratos delgados de andesita.
 - 3. Formación de Matagalpa (Tm): Pequeños afloramientos de lutitas calcáreas de tonalidades grises y coladas de andesitas fuertemente modificadas al oeste de la localidad de El Chimbo, Se pueden observar pequeñas exposiciones de rocas areniscas en la zona de transición entre la formación Matagalpa y la unidad Cerro Grande, pertenecientes al Grupo Padre Miguel.

Grupo Padre Miguel:

- 1. **Miembro Cerro Grande (Tpg):** Compuesto principalmente por ignimbritas son en su mayor parte de color violeta y contienen cristales de cuarzo y sanidina dentro de una matriz vitrificada criptocristalina con fracturación intensa y vertical.
- 2. **Ignimbritas (Tpm):** Entre las principales rocas que conforman esta unidad están tobas riolíticas, dacíticas y andesíticas de diversos colores como blanco, rojo, rosado y verde. Estas rocas presentan cristales de cuarzo, feldespatos, sanidina, biotita, así como inclusiones de pómez y clastos provenientes del Grupo Valle de Angeles y la Formación Matagalpa.
- 3. **Miembro El Periodista (Tpp):** Está compuesta por una secuencia de arenisca, grava, limonita y rodados de origen tobásico. Estos rodados exhiben estratificación cruzada y plana, y en su mayoría presentan una transición gradual hacia capas superiores.
- 4. **Basaltos Cuaternario (Qb):** Son coladas de basalto oscuro que muestran la presencia de pequeños cristales de olivino y plagioclasa. También se observan escasas escorias piroclásticas con una apariencia vesicular y vítrica en estas formaciones.
- 5. Aluvión Cuaternario (Qal y Qe): Se encuentran sedimentos compuestos principalmente por arena, grava y pequeñas rocas redondeadas a causa de la erosión (guijarros). Estos materiales son fragmentos de lutita, arenisca, tobas y otros materiales volcánicos.

Figura 1: Estratigrafía del cuadrángulo de Tegucigalpa, tomado de (R. Rogers, 1990). Jkhg: Grupo Honduras; Kvn: formación Villa Nueva; Krc: formación Río Chiquito; Kvac: pequeño afloramiento de caliza gris dentro de la formación Río Chiquito; Tm: formación Matagalpa; Tcg: Miembro Cerro Grande; Ti: intrusivo y diques de composición intermedia; Tpml: Lahares con clastos de rocas volcánicas terciarias; Tpm: secuencia de ignimbritas; Tep: miembro el Periodista; Qb: coladas de basalto oscuro de olivino; Qe: depósitos antiguos de arena y grava; Qal: depósitos recientes de aluvión.

III | EL PROBLEMA DE LA ESTIMACIÓN DE LAS DENSIDADES DE LAS FORMACIONES GEOLÓGICAS.

En principio, la densidad aparente de las formaciones geológicas es el parámetro crucial para determinar la geometría de cuerpos bidimensionales considerados como masas rocosas de densidad homogénea, a través de cálculos de gravedad generada por ajustes de polígonos de Talwani (Talwani y cols., 1959). De acuerdo a (Telford, Telford, Geldart, y Sheriff, 1990), dos problemas surgen para determinar las densidades de formaciones geológicas; el primero, que la variación máxima de la densidad entre rocas y minerales es de apenas 2,000 kg/m³, aproximadamente (ver figura 2); y en segundo lugar, el hecho de que por lo general no es posible hacer una medición directa de la densidad dentro de la formación geológica de interés. No obstante, a pesar del estrecho rango de los valores de las densidades de las rocas, observamos que el cálculo de la gravedad residual es muy sensible a los contrastes laterales de densidad entre las mismas. La figura 2 muestra los intervalos de variación en las densidades de sedimentos y rocas cercanas a la superficie de la Tierra, donde se aprecia un traslape considerable entre ellas, variando desde 1,700 a 2,300 kg/m³ para sedimentos poco consolidados, 1,600 a 2,600 kg/m³ para rocas sedimentarias, 2,200 a 3,300 kg/m³ para rocas ígneas, y 2,400 a 3,500 kg/m³ para rocas metamórficas, véase la figura 2. (T. R. LaFehr y Nabighian, 2012), (Burger y cols., 2006) (Dobrin, 1976).

Las formaciones geológicas en Tegucigalpa están lejos de ser lechos rocosos uniformes; por el contrario, cada una de ellas presenta fracturas y fallas normales e inversas, y sobre todo, cada formación exhibe una composición litológica muy variada, cuya constitución química y minerológica se desconoce a nivel cuantitativo, salvo para muestras de basaltos cuaternarios (R. Rogers, 1990). En adición, desconocemos los porcentajes de volumen y porosidad de las distintas rocas presentes en una formación específica. Por esta razón, valores de densidades obtenidas en un laboratorio para rocas recogidas en la superficie no rinden información concluyente sobre la densidad representativa de una formación particular que, en el caso de Tegucigalpa, puede tener profundidades de más de 1,000 m de profundidad a lo largo de varios kilómetros (por ejemplo, la capa de ignimbritas depositadas sobre el sur-occidente de Honduras durante el intenso volcanismo del Mioceno medio tiene profundidades de hasta 2 km, según (Williams, McBirney, y Aoki, 1969), y (Weyl, 1980), citados por (R. D. Rogers y cols., 2002)). Como ilustración de la dependencia de la densidad con la profundidad del lecho rocoso, (Hudec y Jackson, 2007) han propuesto un modelo para la densidad de rocas sedimentarias en el Golfo de México, basado en el

Figura 2: De (T. R. LaFehr y Nabighian, 2012). Rango de densidades superficiales para varias rocas y para suelo y aluvión.

trabajo de (Nelson y Fairchild, 1989):

$$\rho(z) = 1400 \text{ kg/m}^3 + 172 z^{0.21}$$
(1)

donde z es la profundidad. Esta relación predice un incremento de aproximadamente 450kg/m^3 , o del 30%, entre la superficie y los 1000 m. A pesar de que este modelo es ajeno a nuestra zona de estudio, no obstante ilustra el alto grado de incertidumbre a que son susceptibles nuestras estimaciones de una densidad representativa para cada polígono, particularmente si éste se extiende a profundidades significativas. Otro factor relacionado con la densidad es la porosidad de las rocas, la cual disminuye con la profundidad debido a la compactación, afectando con ello la retención de agua, de manera que las rocas que se observan sueltas en la superficie pueden sufrir un cambio significativo en densidad aún a profundidades moderadas (Parasnis, 2012), (Lowrie y Fichtner, 2020). Además, las muestras obtenidas en la superficie pueden estar meteorizadas, fragmentadas o deshidratadas, haciendo que su densidad no sea su densidad representativa dentro de la formación (Telford y cols., 1990).

Existen métodos experimentales directos para registrar la densidad de una capa rocosa superficial. Uno de ellos es el medidor de densidad gamma-gamma instalado dentro de un pozo. Esta táctica relaciona la amplitud de la dispersión de Compton con la concentración de electrones dentro de la formación, y ésta, a su vez, con la densidad de la misma dentro de un radio de penetración de la radiación de 15 cm alrededor de la cavidad (Dobrin, 1976). Sin embargo, el mejor procedimiento para obtener la densidad aparente sobre un volumen mucho mayor alrededor de una perforación, utiliza las diferencias de lecturas de un gravímetro ubicado a distintas profundidades dentro del pozo (T. LaFehr, 1983). Ambos procedimientos requieren de equipo que no está disponible para este estudio.

1 | Estimación de las densidades a partir de las velocidades de la onda P

Existen funciones que relacionan la densidad de las rocas con las velocidades sísmicas de la onda P (Lowrie y Fichtner, 2020) (Miller y Stewart, 1991) obtenidas a partir de mediciones de laboratorio. De acuerdo a (T. R. LaFehr y Nabighian, 2012) la relación más efectiva entre densidades de formaciones de rocas sedimentarias y la velocidad de las ondas P es la obtenida por (Gardner, Gardner, y Gregory, 1974):

$$\rho = A V^{1/4} \tag{2}$$

donde ρ es la densidad en kg/m³ y *A* =310 si la velocidad *V* está dada en m/s. Al momento de realizar este estudio, no se dispone de mediciones de la velocidad de ondas P a través de las formaciones presentes lo largo del perfil seleccionado, pero cabe mencionar que este método podría considerarse en futuros trabajos para estimar la densidad de las formaciones conformadas por lutitas, limonitas y areniscas, como la del Río Chiquito (Krc) y del Grupo Honduras (Jkhg), con rocas más alteradas en este último. Además, algunos estudios de laboratorio han producido gráficas de dispersión entre la densidad y la velocidad de ondas P y S en muestras de rocas sedimentarias, ígneas, metamórficas, y sedimentos saturados; gráficos cuya tendencia no debe interpretarse como una relación funcional entre ambos parámetros. Estas relaciones pueden revisarse en (Brocher, 2005) y en (Lowrie y Fichtner, 2020), basadas en el trabajo de (Ludwig, Nafe, y Drake, 1970), véase la figura 3.

Finalmente, (Barton, 1986) observa que, en gráficos de dispersión entre la densidad y la velocidad en distintas rocas, como el de la figura 3, existe un rango apreciable para la densidad correspondiente a una velocidad conocida, y viceversa; de modo que si el grosor de la roca alcanza varios kilómetros, las incertidumbres en la densidad generan grandes diferencias entre las anomalías de Bouguer calculadas y las observadas. Después de ejemplificar con varios casos de estudio, (Barton, 1986) concluye que las mediciones de velocidad de onda sísmica como único indicador de densidad no constituyen una restricción fiable a la hora de reproducir variaciones en la gravedad observada para espesoresde roca de varios kilómetros.

IV | MÉTODO DE GRAVIMETRÍA Y CORRECCIONES A LA GRAVEDAD ABSOLUTA

El método de gravimetría como herramienta de exploración geofísica relaciona las fluctuaciones de la gravedad medida en la superficie de la Tierra con las variaciones en la densidad del material subyacente. La unidad SI utilizada en Geofísica para medir aceleración gravitacional es la unidad gravitacional definida como $1 g.u. = 1 \mu m s^{-2}$ (Parasnis, 2012), pero en gran parte de la literatura, y en este estudio, utilizaremos el "mGal", donde 1mGal = $1 \times 10^{-3} cm/s^2 = 10 g.u$. El campo gravitacional sobre la superficie del planeta varía dentro de un rango de 7000 mGal, y los gravímetros que se usan en las campañas de campo tienen una sensitividad de menos de 5 μ Gal (Series, s.f.). El método gravimétrico requiere, en primer lugar, encontrar la anomalía de Bouguer o perturbación gravitacional Δg , definida como la diferencia entre la gravedad medida (corregida por efectos de mareas y deriva instrumental) y la gravedad teórica, consecuencia de la masa elipsoidal de la Tierra, de la elevación de la estación sobre el nivel de referencia de dicho elipsoide, de la masa del material rocoso entre el elipsoide y la estación, y de los efectos de la topografía (Burger y cols., 2006; Series, s.f.; Telford y cols., 1990). Dichas anomalías de Bouguer reflejan las variaciones en densidad con respecto a un modelo de referencia que toma en cuenta los efectos antedichos. En segundo lugar, la interpretación de estas anomalías Δg implica suponer variaciones locales de la densidad, construyendo un modelo en dos o tres dimensiones que reproduzca el campo gravitacional observado (Series, s.f.). Con ello se pretende identificar estructuras y

Figura 3: De (Ludwig y cols., 1970): Datos experimentales para velocidad de la onda compresional P y de la onda de corte S en relación a la densidad observada, para sedimentos poco consolidados y rocas sedimentarias, ígneas y metamórficas. Los autores advierten que las curvas solo indican tendencia para rocas comunes y no deben interpretarse como una relación funcional entre densidad y velocidad.

formaciones geológicas tanto a escala regional (espesor de la corteza bajo cadenas montañosas, dorsales oceánicas, zonas de subducción) o, como en nuestro caso, a escala local (formaciones geológicas, cuerpos mineralizados, domos de sal, depósitos de petróleo, cavernas, topografía de cuencas sedimentarias).(Burger y cols., 2006; Lowrie y Fichtner, 2020). De acuerdo a (Parasnis, 2012), las máximas anomalías Δg debidas al último grupo de estructuras locales son del orden de unas pocas decenas a varios centenares de unidades gravitacionales (o entre varias unidades y decenas de mGals), como puede observarse en la última columna de las tablas 1,2, y 3. A continuación se da una descripción de las correcciones gravimétricas calculadas en este estudio.

1 | Corrección por efectos de las mareas.

Partiendo del potencial gravitacional de marea de la Luna y el Sol, pueden establecerse los efectos que establecen correcciones aplicables a las medidas de gravimetría, clinometría, extensométrica, nivelación (Vieira, Camacho, y Ortiz, 2002). Las correcciones se miden para la gravedad por los efectos de mareas lunares producen variaciones en el valor de la gravedad medido en un punto con cambios de ± 0.15 mGal a partir de un valor promedio, y además variando en el tiempo a razones de hasta 0.05

mGal/h. Estos efectos pueden predecirse con exactitud, y en muchas ocasiones aparecen incorporados al resultado dependiendo del instrumento utilizado, como fue el caso de los datos usados en este estudio, generados por el instrumento GRAVITON EG de la casa Lacoste & Roemberg (Moncada y Canales, 2011). Sin embargo, se puede hacer uso de software especializado para calcular estos efectos (Rudman, Ziegler, y Blakely, 1977).

2 | Corrección por deriva instrumental.

La deriva instrumental puede ser observada debido al cambio de lectura del gravímetro por la fatiga del resorte que se encuentra en él. Por ejemplo, al observar diferentes lecturas para la misma medida en una localización, a este efecto se le denomina deriva instrumental. El cambio puede darse en periodo largo (meses), dependientes en gran medida de la edad y el uso del instrumento; o también en cambios de periodo corto (horas), si el tiempo de observación es de pocas horas, se puede considerar que los cambios de periodo corto tienen un comportamiento lineal, por lo que el método de interpolación lineal resulta una buena aproximación a fin de realizar la corrección por deriva instrumental (Cantos Figuerola, s.f.). Otros factores que se deben tomar en cuenta es el diseño del instrumento, el cambio de temperatura, presión, vibraciones, entre otros. El cálculo de estas correcciones se realizó en el trabajo previo de (Moncada y Canales, 2011).

3 | Corrección por efecto de latitud.

La aceleración centrífuga de la Tierra causa que su superficie se abulte en el ecuador, efectos que explican la diferencia observada entre los valores de la gravedad en el ecuador y en el polo, pues el efecto de esta fuerza centrífuga es mayor en el ecuador y disminuye a cero en los polos del eje de rotación de la Tierra (Burger y cols., 2006). La forma de la Tierra se toma como la superficie equipotencial del campo gravitacional que coicide con el nivel promedio del mar, conocida como "geoide", pero esta superficie irregular como para tomarla como referencia computacional, así que se usa en vez de ella la superficie que mejor se ajusta al geoide, conocida como elipsoide de referencia. El campo gravitacional sobre el elipsoide varía únicamente con la latitud geográfica (Series, s.f.), modelo adoptado por la Asociación Internacional de Geodesia en 1967, y que fue el modelo utilizado en el estudio de (Moncada y Canales, 2011), Sin embargo, la versión más actualizada de este modelo es la de 1984, la cual define la gravedad sobre un elipsoide de referencia coincidiendo con el nivel del mar. La fórmula que utilizamos en este trabajo, del sistema de referencia geodésico de 1984 GRS84 (GRIDS, 2014) es:

$$g_{n_{1984}} = g_e \frac{1 + K \sin^2 \phi}{\sqrt{1 - e^2 \sin^2 \phi}}$$
(3)

Donde:

• $K = \frac{g_p}{ag_e}b - 1$

polos, respectivamente.

- *a*, *b*: Semieje mayor y semieje menor del elipsoide, respectivamente.
- g_e, g_p : Gravedad teórica en el ecuador y en los ϕ : Latitud geodésica.
- e^2 : Cuadrado de la primera excentricidad elipsoidal.

Numéricamente, se representa por la fórmula:

$$g_{n,1984} = 978,032.67714 \left(\frac{1 + 0.0019318513639\sin^2\phi}{\sqrt{1 - 0.0066943799913\sin^2\phi}} \right) \text{mGal}$$
(4)

La cual, corrige por efectos de posición (latitud ϕ) y aceleración centrífuga, obteniendo la gravedad normal, g_n .

4 | Corrección por efecto de elevación.

Por efectos de la altura sobre el elipsoide de referencia, la gravedad en un punto disminuye al incrementar la distancia al centro de la Tierra. Para este cálculo se utiliza el gradiente de la gravedad respecto a la distancia desde el centro del elipsoide R, tomando en cuenta el modelo que recoge los efectos de la elipticidad del planeta, la rotación y la altura elipsoidal z. Nótese que en este estudio no utilizamos la elevación H sobre el geoide o "nivel del mar", siguiendo la discusión presentada en (Li y Götze, 2001). La relación para el cálculo del gradiente de la gravedad en función de la latitud ϕ y la altura elipsoidal zestá dada por (Grant y West, 1965):

$$FA_{corr} = \frac{dg}{dR} = -0.3086 - 0.00023\cos(2\phi) + 0.00000002z$$
(5)

que representa la tasa de decrecimiento de la gravedad g por metro en cada estación de observación. Esta corrección aparece en la quinta columna FA_{corr} en las tablas 1, 2 y 3, donde la tasa negativa dada por la ecuación 5 se ha multiplicado por la altura elipsoidal z de cada estación, véase (Moncada y Canales, 2011). No obstante, para llevar la estación al nivel del elipsoide esta cantidad debe sumarse en el proceso de obtener la anomalía de Bouguer Δ_g en la última columna.

5 | Corrección de Bouguer

Para una estación ubicada a una altura elipsoidal *z*, la masa entre el nivel de referencia del elipsoide y la altura de la estación contribuye a la gravedad medida en ésta y debe sustraerse para remover este efecto. El procedimiento utilizado tradicionalmente para corregir este exceso de material supone el cálculo de la atracción de una placa infinita de altura, *z* y densidad ρ , conocido como *corrección de Bouguer* (Burger y cols., 2006). (Bullard, 1936), amplía la corrección de Bouguer a tres partes: una primera corrección **Bullard A** (B_A) que es la corrección de Bouguer simple arriba mencionada, que empareja la topografía con una losa horizontal infinita de espesor igual a la altura de la estación sobre el plano de referencia, (Nowell, 1999):

$$B_{corr} = B_A = 2\pi G \rho z \tag{6}$$

donde, *G* es la constante gravitacional, ρ es la densidad de la superficie y *z* es la altura que define el grosor de la placa. En segundo lugar, la corrección **Bullard B** (*B_B*) para la curvatura terrestre, la cual consiste en reducir la losa infinita de Bouguer a un casquete esférico cuyo espesor se mantiene definido por la altura a la estación. Para esto es preciso la superficie de estudio a un radio de 166.735 km alrededor de cada estación. Esta corrección está determinada por la siguiente serie de potencias:

$$B_B = Az - Bz^2 + Cz^3 + Dz^4$$
(7)

con z es la altura a la estación, y las constantes definidas como, $A = 1.644, 139 \times 10^{-3}, B = 3.533, 047 \times 10^{-7}, C = 1.002, 709 \times 10^{-13}$ y $D = 3.002, 407 \times 10^{-18}$ (Nowell, 1999). Esta aproximación da correcciones dentro de 0.01 mGal de la fórmula exacta citada por (T. R. LaFehr y Nabighian, 2012). Así mismo, tenemos una corrección de **Bullard C** (B_C), la cual describe las correcciones de topografía. El estudio anterior de (Moncada y Canales, 2011) sobre la zona de influencia se limitó a realizar una corrección simple de capa de Bouguer tradicional (Bullard A) ignorándose por completo los efectos de la curvatura de la Tierra.

6 | Corrección por efectos de topografía.

Una losa plana de Bouguer o una capa esférica (Bullard B) no da cuenta de las ondulaciones del terreno con respecto al nivel de un punto de observación, alrededor del cual existen excesos y deficiencias de masa que afectan el valor medido de g_{obs} . Estas son las correcciones más difíciles de estimar, en particular para regiones montañosas, requiriéndose para ello de un modelo de elevación digital (DEM) de resolución de 30 m o menos, que represente aceptablemente el terreno tanto en la vecindad de la estación gravimétrica como a distancias de unos 160 km de la misma. Sin embargo, para el terreno dentro de 250 m de la estación, los DEMs producen errores significativos (Cogbill, 1990). La contribución de los objetos o accidentes topográficos que se encuentran a pocos metros del gravímetro contribuyen significativamente al valor medido de g_{obs} , y la omisión de estos efectos, que caen fuera de la resolución de los modelos de elevación digital disponibles en la actualidad, puede provocar errores en exceso de 0.1 mGal (Leaman, 1998). Las correcciones para el terreno muy cercano en la estación suelen ser estimadas crudamente en el campo, o en algunos casos son soslayadas por completo (Cogbill, 1990). En este trabajo, las correcciones dentro de un radio de 250 m de cada estación no se calcularon debido a que requieren, a falta de otra campaña de campo, una recalibración del modelo SRTM para cada estación, y una interporlación cada 5m para anillos de Hammer dentro de esa área. Dado que las estructuras que estamos buscando tienen espesores entre 500 y 1000 m, extendidas sobre un área de 10×15 minutos de arco, y que generan señales gravitacionales de entre 1 y 10 mGals, consideramos que el tiempo y esfuerzo requerido para esas estimaciones no las hace prácticas para el propósito de este estudio.

Las correcciones de topografía realizadas por (Moncada y Canales, 2011) sobre la base de datos de este estudio se basaron en el método tradicional de (Hammer, 1939), que calcula la gravedad que un anillo de grosor igual a la altura topográfica relativa *z*, densidad de la corteza ρ , con un radio interior R_1 , y radio exterior R_2 produce en su centro, en donde se localiza la estación. (Hofmann-Wellenhof y Moritz, 2006) expresa este resultado como:

$$g_{anillo} = 2\pi G \rho \left[(R_1 - R_2) + \sqrt{R_2^2 + z^2} - \sqrt{R_1^2 + z^2} \right]$$
(8)

En el trabajo previo de (Moncada y Canales, 2011) dichos cálculos se realizaron con el modelo de elevación digital SRTM (Farr y cols., 2007) con resolución de 90 m horizontales y 10 m. verticales, con anillos de Hammer de radios a partir de 390 m hasta aproximadamente 22 km de cada estación.

La anomalía completa de Bouguer (Burger y cols., 2006), se obtiene a partir de la reducción de las correcciones anteriores:

$$\Delta g_B = g_{obs} - g_n + FA_{corr} - B_{corr} + TC \tag{9}$$

7 | Corrección por efectos de placa de Bouguer y topografía. Método de SRTM2gravity (Hirt y cols., 2019).

Uno de los objetivos de este estudio, en vista de las limitaciones del trabajo de (Moncada y Canales, 2011), consistió en actualizar los cálculos de las correcciones de topografía y, simultáneamente, incorporar la ampliación de la placa de Bouguer con los efectos de la curvatura de la Tierra.

Actualmente, y desde el año 2019, existe una base de correcciones topográficas ya calculadas para el planeta entero, con una resolución espacial de 3 segundos de arco (≈ 90 m), conocido como **SRTM2gravity2018** (Hirt y cols., 2019). Este modelo incluye en una misma base de datos tanto el efecto de la placa de Bouguer esférica como de la topografía del planeta entero en aproximación esférica, y por tanto no está limitado a los 167 km del análisis tradicional. Se utilizó una densidad uniforme de 2,670 kg/m³ en todos los cálculos, cuya exactitud computacional ha sido estimada entre 0.1 y 0.2 mGal para terreno con ondulaciones suaves, alrededor de 10% de la magnitud de las señales gravitacionales de las estructuras de interés en nuestro estudio. El procedimiento de (Hirt y cols., 2019) se llevó a cabo transformando las alturas elipsoidales del modelo de elevación digital SRTM (Farr y cols., 2007; Van Zyl, 2001) a efectos gravitacionales evaluando la integral de Newton 10 con una combinación de técnicas numéricas en el dominio espacial y espectral (Hirt y Kuhn, 2014) a resolución espacial de 3 segundos de arco, tarea computacional imposible de culminar con una computadora de escritorio.

$$\delta g^{H}(r,\phi,\lambda) = G\rho \int_{\phi=0}^{\phi_{0}=\pi} \int_{\alpha=0}^{\alpha=2\pi} \int_{r_{Q}=R}^{R+H} \frac{r_{Q}^{2}\left(r-r_{Q}\cos\phi\right)}{l^{3}} dr_{Q} d\alpha \, \mathrm{sen}\,\phi d\phi \tag{10}$$

En la integral de Newton 10, que (Hirt y cols., 2019) toman de (Heck y Seitz, 2007), δg^H es la primera derivada radial negativa del potencial debido a la topografía; *G* es la constante de gravitación universal; (H, ρ) es el modelo de masa topográfica, y $(r_Q, \phi_Q, \lambda_Q,)$ son el radio y las coordenadas geográficas del punto de integración *Q*, y las variables (φ, α) son la distancia esférica y el azimuth entre *P* y *Q* separados por la distancia euclidiana *l*. Nótese, en 10, que el límite de integración $\varphi_0 = \pi$ implica un cálculo global. El modelo SRTM2gravity de (Hirt y cols., 2019) utiliza R = 6378, 137.0 m, $G = 6.67384 \times 10^{-11}$ m³/kgs² y $\rho = 2,670$ kgm⁻³. Debido a la utilización de este último valor de la densidad, ampliamente aceptado como densidad promedio de la corteza en estudios de gravimetría (Burger y cols., 2006; Telford y cols., 1990) y para poder hacer uso de este estado del arte en correcciones de topografía, no hicimos una determinación de la óptima densidad de reducción con cualquiera de los métodos tradicionales discutidos en (Yamamoto, 1999). En la figura 4 se muestran las correcciones de topografía del modelo SRTM2grav2018 para la zona de influencia de la campaña de (Moncada y Canales, 2011), cuya topografía de meseta erosionada y grábenes produce correcciones de entre 50 y 250 mGal, para los valles y las cimas más altas, respectivamente.

Para encontrar la anomalía completa de Bouguer con el método SRTM2gravity de (Hirt y cols., 2019), se modifica la ecuación 9, sustrayendo a los primeros tres términos la cantidad *SRTM2grav*, que incorpora los efectos gravitacionales tanto de la topografía como de la placa de Bouguer, véase la ecuación 11

$$\Delta g_B = g_{obs} - g_n + FA_{corr} - SRTM2grav \tag{11}$$

Figura 4: Correcciones del modelo SRTM2gravity (Hirt y cols., 2019) e resolución de 90 m para la zona del cuadrángulo de Tegucigalpa y Valle de Morocelí, las cuales incluyen tanto los efectos de la topografía como de la placa de Bouguer en aproximación esférica para todo el planeta. Las zonas de gravedad menor (en azul oscuro) corresponden al valle de Cantarranas y Morocelí y al valle del Zamorano. Las correcciones más altas, hasta de 250 mGals, aparecen en las zonas montañosas escarpadas de las montañas de La Tigra, Azacualpa y El Chile.

V | MÉTODO DE EXPLORACIÓN POR CONSTRUCCIÓN DE POLÍGONOS DE TALWANI.

(Hubbert, 1948) y (Talwani y cols., 1959) introdujeron el método utilizado en este estudio para calcular la anomalía residual de Bouguer debida a un cuerpo geológico, modelado como un polígono en dos dimensiones. Los cálculos utilizan una integral de contorno y la Ley de Gauss, obteniendo la gravedad mediante el cálculo de las integrales de línea del polígono entre cada vértice del mismo. La anomalía resultante es proporcional a la suma de las integrales de línea y al contraste de densidad $\Delta \rho$ entre el polígono y la roca circundante, dada por la expresión (Hubbert, 1948):

$$\Delta g = -2k\Delta\rho \oint zd\theta = 2k\Delta\rho \oint \theta dz \tag{12}$$

donde z es la coordenada vertical, y θ es la coordenada polar en radianes de un punto en la periferia de la masa en un plano normal a su eje que pasa por el origen. Véase la Figura 5.

En este estudio se utilizó el software GravMag (Burger y cols., 2006) que calcula valores de gravedad para sólidos de longitud infinita y sección transversal poligonal. Esta rutina puede usarse como herramienta de exploración geofísica al importar valores de gravedad medidos en el campo y modelar las posibles configuraciones geológicas responsables de las anomalías observadas (Figura 12)

Figura 5: Polígono de Talwani (Talwani y cols., 1959) con un contraste de densidad $\Delta \rho$ con respecto a la roca circundante, con densidad $\rho = 2,670 \text{ kg/m}^3$.

VI | RESULTADOS (I): CORRECCIONES Y ANOMALÍAS DE BOUGUER CALCULADAS A PARTIR DE GRAVEDAD ABSOLUTA.

Los datos de gravedad absoluta g_{obs} de (Moncada y Canales, 2011) para 125 estaciones, corregidos por efectos de deriva instrumental y mareas en el estudio, aparecen en la tercera columna de las tablas 1, 2 y 3. Estas estaciones se muestran en el mapa de la figura 6 y sus coordenadas geográficas y altura elipsoidal pueden consultarse en las tablas 6, 7 y 8 del Anexo. En la cuarta columna de las tablas 1, 2 y 3 vemos el valor de la gravedad normal g_n , actualizada en este estudio con la ecuación 3 del sistema de referencia geodésico de 1984 GRS84 (GRIDS, 2014). La quinta columna FAcorr corresponde a la tasa negativa de disminución de la gravedad con la altura, dada por la ecuación 5, multiplicada por la altura elipsoidal z de cada estación. Como hemos discutido en la sección anterior, la columna SRTM2grav representa los efectos combinados de la topografía y de la placa de Bouguer en aproximación esférica a nivel planetario según el modelo de (Hirt y cols., 2019). Estos valores corresponden a interpolaciones cúbicas para las localizaciones de las estaciones, calculadas a partir del ráster que se muestra en la figura 4. Finalmente, la anomalía de Bouguer completa, Δ_g se calcula según la ecuación 11, y representa la contribución a la gravedad observada gobs de todas aquellas estructuras geológicas y tectónicas que existen en la naturaleza como desviaciones del modelo de corteza de densidad homogénea $\rho = 2,670$ kg/m³ y cuya exploración es el segundo objetivo de este trabajo. En la figura 6 se muestra un mapa de contorno elaborado con las anomalías de Bouguer para todos los datos de las tablas 1, 2 y 3, mejorados a partir del trabajo (Moncada y Canales, 2011), con los perfiles AA' y BB' elegidos para explorar la geología subsuperficial en Tegucigalpa. En la siguiente sección abordamos la correlación de esta gravedad de Bouguer con estudios previos y su interpretación de acuerdo a modelos regionales de grosor de corteza.

MAPA DE ANOMALÍAS DE BOUGUER EN EL CUADRÁNGULO DE TEGUCIGALPA

Figura 6: Figura superior: ubicación de la zona de influencia del estudio de gravimetría de (Moncada y Canales, 2011) en la zona central de Honduras. Figura inferior: mapa de contorno de las anomalías de Bouguer de la tercera columna de las tablas 1, 2 y 3. Las estaciones en rojo y verde conforman los transectos AA' y BB' en direcciones O-E y NE-SO, seleccionados para modelar la geología subsuperficial. Anomalías negativas en la zona central de Honduras también han sido reportadas por (Ander y cols., 1991; Bowin, 1976; Mickus, 2003) y (Lücke y Arroyo, 2015). No obstante, la caída significativa de gravedad sobre y alrededor de las estaciones TIG1 hasta VG3 y aledañas (azul oscuro) puede deberse no tanto a raíces montañosas profundas de baja densidad, sino a una subestimación de las correcciones de topografía del modelo de (Hirt y cols., 2019) sobre relieve abrupto.

NI0	m	8 obs	g_n	FAcorr	SRTM2grav	Δ_g
IN	ID	(mGal)	(mGal)	(mGal)	(mGal)	(mGal)
1	SUYAPA	978063.469	978338.626	-333.428	137.829	-79.558
2	UTEC	978061.787	978336.922	-332.408	137.350	-80.076
3	COHC	978076.479	978337.939	-307.483	128.749	-82.726
4	INICE	978071.664	978336.791	-312.151	129.485	-82.461
5	TONC	978072.990	978337.549	-308.789	130.570	-86.340
6	CATO	978054.673	978337.286	-325.177	135.528	-92.963
7	COPE	978037.103	978337.510	-342.496	141.170	-99.081
8	MALL	978080.017	978338.713	-309.121	129.850	-79.425
9	PESP	978072.136	978338.954	-321.340	133.268	-78.746
10	AMER	978087.422	978339.254	-297.440	125.840	-80.229
11	LEON	978077.586	978339.562	-309.597	129.475	-81.854
12	EVAN	978081.707	978339.596	-306.479	127.756	-79.166
13	MOL	978078.417	978339.603	-313.717	130.593	-78.061
14	LSTA	978057.513	978340.100	-343.012	138.939	-78.513
15	ELE	978027.719	978340.621	-385.768	154.537	-81.671
16	SARA	977993.876	978340.129	-439.541	175.392	-82.104
17	MIRA	977994.558	978340.049	-431.813	168.571	-82.249
18	ROSA	978003.907	978340.667	-417.162	167.674	-87.273
19	VALL	977993.738	978342.211	-439.904	173.007	-81.576
20	UPN	978082.240	978338.159	-304.347	127.956	-79.528
21	JUAN	978063.253	978338.925	-329.464	134.568	-80.776
22	YIP	978091.203	978338.559	-289.618	122.658	-80.396
23	HATO	978060.611	978337.796	-335.783	137.883	-79.285
24	TRAP	978055.840	978338.126	-341.201	140.578	-81.663
25	C1CG	978057.370	978339.913	-332.557	135.700	-85.686
26	CGZ8	978050.485	978340.690	-340.894	139.056	-88.368
27	VELE	977978.377	978341.157	-444.818	175.406	-93.367
28	PPOR	977964.175	978340.249	-466.805	183.856	-93.126
29	CRTY	978075.469	978338.708	-307.628	129.393	-85.003
30	CARR	978050.068	978339.387	-342.298	140.333	-87.354
31	CAES	978057.856	978338.896	-327.624	135.926	-89.342
32	BZAM	978107.920	978335.382	-244.306	105.395	-88.553
33	Z 1	978158.682	978335.351	-236.952	102.925	-42.642
34	Z2	978164.807	978335.319	-232.027	101.219	-39.704
35	Z3	978164.580	978335.245	-235.185	102.130	-37.610
36	Z4	978160.432	978335.077	-243.33	104.906	-36.229
37	Z5	978159.798	978334.943	-243.156	104.498	-36.486
38	Z6	978162.644	978335.631	-235.236	102.447	-40.198
39	Z 7	978153.317	978335.564	-259.910	111.666	-34.004

1 | Tablas: correcciones y anomalías de Bouguer calculadas a partir de gravedad absoluta.

Tabla 1: Anomalías de Bouguer completas **1 de 3**. g_{obs} : gravedad observada (Moncada y Canales, 2011); g_n : gravedad elipsoidad GRS84 (GRIDS, 2014); FA_{corr} : corrección por altura; SRTM2grav: Correcciones de placa de Bouguer y Topografía del modelo SRTM2gravity de (Hirt y cols., 2019); Δ_g : Anomalía de Bouguer completa, según ecuación 11.

N 10	ID	<i>g</i> _{obs}	g_n	FAcorr	SRTM2grav	Δ_{ρ}
N°	ID	(mGal)	(mGal)	(mGal)	(mGal)	(mGal)
40	Z8	978145.162	978335.909	-272.030	116.120	-34.837
41	Z9	978166.376	978335.419	-243.613	105.007	-30.437
42	Z10	978168.073	978335.760	-229.794	100.058	-37.951
43	Z11	978148.749	978335.418	-252.106	108.306	-42.870
44	Z12	978101.930	978335.430	-260.068	110.414	-83.846
45	Z13	978093.843	978335.232	-275.809	115.810	-81.391
46	Z14	978082.012	978335.214	-294.612	121.755	-80.345
47	Z15	978070.675	978335.328	-312.075	127.493	-80.072
48	Z16	978059.396	978335.619	-329.475	133.907	-80.655
49	Z17	978047.235	978335.940	-348.354	139.163	-79.514
50	BG1	978110.295	978334.7895	-238.246	103.378	-89.626
51	G1	978157.900	978334.408	-236.861	102.960	-42.606
52	G2	978157.620	978334.047	-238.516	103.444	-41.355
53	G3	978156.473	978333.626	-242.025	104.837	-39.964
54	G4	978159.381	978333.163	-242.962	105.009	-35.829
55	G5	978155.201	978332.794	-249.374	106.706	-34.925
56	G6	978142.818	978332.439	-269.752	114.354	-34.223
57	G7	978155.638	978335.069	-241.268	104.400	-42.562
58	G9	978146.581	978335.613	-264.758	111.933	-36.207
59	G10	978136.210	978335.805	-285.430	118.026	-32.191
60	G11	978131.501	978335.807	-292.896	120.159	-31.568
61	PICA	978014.302	978340.048	-395.909	158.163	-87.999
62	HAT1	977984.500	978340.792	-447.682	177.284	-85.893
63	HAT2	977983.690	978340.528	-446.933	172.202	-82.107
64	TABL	977962.477	978338.543	-482.423	185.857	-79.500
65	EMP	977938.145	978338.394	-518.369	199.211	-81.091
66	LUCI	977978.848	978339.880	-462.121	182.811	-81.723
67	Z31	978150.800	978336.073	-247.984	106.085	-43.375
68	Z32	978144.756	978335.677	-253.933	107.908	-44.896
69	Z33	978075.935	978336.473	-365.916	147.178	-41.801
70	Z34	978119.568	978335.789	-294.122	122.014	-44.112
71	C1	977979.004	978336.689	-450.325	177.849	-85.208
72	C2	978020.411	978336.375	-395.482	160.298	-80.779
73	PUENT	978156.508	978347.032	-207.369	91.021	-74.177
74	CLASTO	978144.842	978349.122	-238.757	103.929	-69.451
75	BOTE	978149.131	978348.552	-229.059	100.151	-70.514
76	TEJA	978148.072	978348.093	-223.870	97.306	-73.456
77	EVAN	978150.311	978347.615	-216.211	95.586	-76.678
78	PANT	978245.350	978347.318	-212.116	93.695	16.452
79	CUES	978146.670	978346.669	-217.120	95.454	-78.334
80	CAMP	978140.289	978346.445	-227.120	99.228	-78.264
81	ENTR	978141.171	978346.065	-225.321	98.034	-77.608
82	SCUE	978122.821	978345.793	-253.578	108.924	-78.318

Tabla 2: Anomalías de Bouguer completas **2 de 3**. g_{obs} : gravedad observada (Moncada y Canales, 2011); g_n : gravedad elipsoidad GRS84 (GRIDS, 2014); FA_{corr} : corrección por altura; SRTM2grav: Correcciones de placa de Bouguer y Topografía del modelo SRTM2gravity de (Hirt y cols., 2019); Δ_g : Anomalía de Bouguer completa, según ecuación 11.

		gobs	<i>g</i> _n	FAcorr	SRTM2grav	Δ_{a}
N°	ID	(mGal)	(mGal)	(mGal)	(mGal)	(mGal)
83	TAMA	978109.060	978345.463	-272.854	113.798	-77.346
84	ALEJ	978084.399	978345.133	-309.210	126.762	-78.286
85	LPED	977957.931	978339.425	-468.246	185.247	-98.495
86	VG1	977884.380	978343.026	-498.041	189.352	-149.957
87	VG2	977967.127	978344.451	-379.528	149.405	-147.200
88	VG3	977885.972	978344.302	-495.147	186.796	-149.979
89	EMP1	977986.925	978338.159	-446.029	175.683	-80.888
90	EMP2	978050.813	978338.148	-346.777	141.797	-82.355
91	EMP3	977992.474	978337.809	-428.914	169.685	-86.106
92	HAT1	977984.721	978340.792	-447.682	177.283	-85.671
93	TG4	977809.672	978343.675	-589.577	222.160	-166.586
94	TG3	977854.083	978343.213	-523.984	200.935	-166.081
95	TG2	977883.979	978342.560	-479.129	186.796	-166.248
96	TIG1	977910.522	978341.720	-440.449	175.490	-166.239
97	EMP4	977932.310	978338.230	-421.040	168.514	-153.395
98	CR21	978145.945	978345.557	-211.707	92.112	-80.017
99	CR22	978144.589	978345.136	-215.831	94.163	-78.879
100	CR23	978142.623	978345.231	-221.850	96.874	-77.632
101	CR24	978153.679	978345.234	-203.673	90.472	-78.354
102	CR25	978144.429	978344.743	-191.364	93.073	-102.023
103	CR26	978153.661	978344.657	-210.170	85.961	-66.788
104	VA1	977988.957	978343.558	-444.438	169.453	-79.617
105	VA2	978026.920	978341.219	-388.636	156.180	-81.843
106	VA3	978000.374	978339.669	-418.547	164.931	-85.679
107	VA4	977900.100	978341.137	-571.192	214.408	-84.254
108	CR32	978140.571	978343.994	-207.633	91.518	-87.307
109	CR33	978136.023	978343.255	-204.210	89.993	-93.016
110	CR34	978140.484	978342.522	-208.048	92.178	-86.169
111	CR35	978143.410	978341.773	-209.868	93.111	-81.606
112	CR36	978144.589	978341.102	-204.008	91.355	-83.860
113	CR37	978147.339	978340.333	-191.470	86.946	-88.470
114	CR38	978151.197	978339.754	-183.725	84.593	-89.424
115	CR39	978153.656	978339.073	-182.310	84.038	-87.146
116	CR310	978153.431	978338.314	-181.481	83.602	-87.003
117	CR311	978153.532	978337.558	-185.080	84.950	-83.897
118	CR312	978145.001	978337.072	-200.074	90.379	-82.376
119	CR313	978156.437	978337.808	-178.519	82.665	-85.516
120	OL1	978065.857	978341.249	-322.584	133.156	-85.964
121	OL2	9/806/.440	978342.363	-308.658	127.827	-94.092
122	OL3	9/8090.349	978343.581	-271.410	114.963	-96.784
123	OL4	9/8092.822	978343.237	-266.466	112.717	-96.667
124	OL5	978077.623	9/8342.646	-290.889	122.388	-96.522
125	OL6	978081.923	978341.849	-289.645	122.525	-92.805

Tabla 3: Anomalías de Bouguer completas **3 de 3**. g_{obs} : gravedad observada (Moncada y Canales, 2011); g_n : gravedad elipsoidad GRS84 (GRIDS, 2014); FA_{corr} : corrección por altura; SRTM2grav: Correcciones de placa de Bouguer y Topografía del modelo SRTM2gravity de (Hirt y cols., 2019); Δ_g : Anomalía de Bouguer completa, según ecuación 11.

VII | INTERPRETACIÓN DE LAS ANOMALÍAS DE BOUGUER DENTRO DEL MARCO TECTÓNICO Y GRAVIMÉTRICO REGIONAL.

Como puede observarse en la última columna de las tablas 1, 2, y 3, la totalidad de las anomalías de Bouguer que resultan de la mejora en las correcciones de gravedad normal y topográficas sobre los datos del estudio de (Moncada y Canales, 2011) resultaron negativas, variando aproximadamente entre -167 y -30 mGal (ver figura 6). Este rango contiene a los datos regionales reportados por (Bowin, 1976) para el centro de Honduras, cuyos mapas de contorno, construidos en base a la información muy dispersa y fragmentaria disponible hasta esa fecha, dan isogalas de entre -100 y -50 mGal para la zona. (Ander y cols., 1991) reportan entre -110 y -70 mGal a lo largo de un perfil Norte -Sur que atraviesa el país a lo largo del paralelo 88 y posteriormente (Mickus, 2003) genera contornos de -80y -60 en la región de influencia, con datos de 500,000 estaciones gravimétricas recopilados de tres diferentes agencias. Finalmente, (Lücke y Arroyo, 2015) utilizó el modelo geopotencial combinado EGM2008 de (Pavlis, Holmes, Kenyon, y Factor, 2012) con una resolución espacial de 10 km, para generar el mapa de anomalías gravimétricas para el istmo centroamericano que se muestra en la figura 7, donde se observa la consistencia del modelo de (Pavlis y cols., 2012), que combina datos de misiones satelitales y estaciones en Tierra, con los valores obtenidos en este estudio.

Figura 7: Mapa regional de anomalías gravimétricas elaborado por (Lücke y Arroyo, 2015) para el istmo centroamericano, calculado a partir del modelo gravitacional terrestre EGM2008 de (Pavlis y cols., 2012). Nótese que las anomalías de Bouguer calculadas en las tablas 1, 2 y 3 y figura 6 coinciden con el rango de mGals correspondiente a las zonas azules en la zona central de Honduras. Las anomalías regionales negativas en el centro de Honduras han sido interpretadas por (Ander y cols., 1991) y (Case y cols., 1991) como reflejo de la compensación isostática de la corteza continental de baja densidad del bloque Chortís.

Se ha observado, a escala global, que estaciones gravimétricas emplazadas en montañas producen anomalías de Bouguer superpuestas sobre una tendencia espacial negativa de longitud de onda larga (T. R. LaFehr y Nabighian, 2012), la cual se interpreta como una deficiencia de masa. Cualquier anomalía de caracter regional suele interpretarse como resultado de la variación del espesor de la corteza bajo el nivel del mar y/o de la densidad lateral de la misma, según algún modelo de compensación isostática, siendo los más comunes los de Airy, Pratt, Vening Meinesz or Vening Meinesz-Mortiz (Sjöberg y Bagherbandi, 2017). En el centro de Honduras, con elevaciones mayores a 1000 m (región azul, figura 7), estudios sísmicos de reflexión de (Kim y cols., 1982), adjudican un grosor de 35 a 37 km a la corteza, hecho que sugiere un escenario de compensación isostática según el modelo de Airy (Airy, 1855), en el cual la corteza continental de baja densidad del bloque Chortís sufriría un engrosamiento sobre el manto dúctil y más denso de la astenósfera, sobre la cual descansa en equilibrio arquimediano. En regiones del planeta donde se cumple este modelo, las anomalías de Bouguer tienen una fuerte correlación inversa con el espesor de la corteza, y podrían usarse para determinar el espesor de la misma (Sjöberg y Bagherbandi, 2017). Tanto (Ander y cols., 1991) como (Case y cols., 1991) asumen un mecanismo de compensación isostática para explicar las anomalías de Bouguer negativas en la meseta del bloque Chortís en Honduras, sin especificar el modelo supuesto. No obstante, cualquiera de estos modelos asumen que la corteza está compuesta de prismas verticales de densidad uniforme, y por lo general se desconoce qué tan realista puede ser la hipótesis de equilibrio isostático para una región determinada (Sjöberg y Bagherbandi, 2017). Si bien la presencia de anomalías negativas en nuestra zona de influencia (Figura 6) es esperada por estar ubicada dentro de una depresión gravimétrica regional de más de 500 km de largo entre Guatemala y Honduras (Figura 7), la fuerte variación entre -167 y -30 mGal probablemente se deba a una subestimación significativa de las correcciones de topografía del modelo de (Hirt y cols., 2019) para las zonas montañosas más elevadas e irregulares dentro del área de estudio.

VIII | CORRECCIÓN ISOSTÁTICA PARA LOS PERFILES DE EXPLORA-CIÓN GEOFÍSICA.

En la figura 8 se muestran los perfiles AA' y BB' seleccionados con el fin de explorar la geología sub-superficial de Tegucigalpa a partir de la gravedad de Bouguer. El perfil AA' está formado por 11 estaciones en dirección Este-Oeste a lo largo de unos 25 km y el perfil BB', de 17 km, comprende 9 estaciones con rumbo NE-SO. El transecto AA' atraviesa los afloramientos superficiales de dos formaciones geológicas mayores: la formación Tpm, o tobas riolíticas y andesíticas del Terciario, que recubren dos quintas partes del perfil AA' en ambos extremos, y en segundo lugar, en su sección media, la formación de Río Chiquito (Krc) del Cretácico superior, con estratos conteniendo lutitas, limonitas, areniscas y algunas capas de conglomerado de cuarzo, así como algunos estratos delgados de andesita (R. Rogers, 1990). Por otra parte, la geología superficial recorrida por el perfil BB' consiste de las formación de ignimbritas Tpm (Terciario) de tobas riolíticas, dacíticas y andesíticas, la formación Río Chiquito descrita arriba (Krc) y aproximadamente 1 km de exposición de la formación Villa Nueva (Kvn) más antigua (Cretácico temprano), integrada por lutitas, areniscas, conglomerados de cuarzo y clastos de rocas metamórficas, volcánicas y caliza. (R. Rogers, 1990).

En la gráficas superiores de las figuras 10 y 11 hemos ilustrado la relación entre la altura elipsoidal del terreno y las correcciones por altura (FA), placa de Bouguer y topografía según el modelo SRTM2grav del (Hirt y cols., 2019) para los perfiles AA' y BB', respectivamente (ver la tablas 4a y 4b). Nótese, para el perfil AA', la correlación positiva que existe entre estas correcciones y la topografía del terreno, como cabe esperar. Para el perfil BB' (figura 11 superior), la correlación entre las correcciones de

topografía y la elevación es baja, lo cual apunta a la dificultad de estimar correcciones topográficas para zonas de relieve accidentado, particularmente en las estaciones TIGR1 y TIGR2. Al remover estos efectos y la gravedad de referencia g_n (ecuación 3), de la gravedad observada, g_{obs} , obtenemos las anomalías de Bouguer Δ_g que aparecen en la gráfica intermedia de la ambas figuras. Esta gravedad de Bouguer Δ_g ya no está correlacionada con la topografía del perfil y puede interpretarse como la suma de una tendencia regional negativa fuerte, debida a la compensación isostática de la corteza continental de baja densidad (Ander y cols., 1991), mas la contribución gravitacional de estructuras más pequeñas, presentes dentro de la corteza como fluctuaciones que se desvían de la densidad promedio aparente de aquélla, tomada en este estudio como $\rho = 2,670 \text{ kg/m}^3$.

Figura 8: Perfiles AA' y BB' seleccionados para la exploración sub-superficial usando polígonos de Talwani sobre las formaciones geológicas que atraviesan de acuerdo al mapa de (R. Rogers, 1990). Los transectos corren mayormente sobre la formación Río Chiquito (Krc) de lutitas, limonitas, areniscas y capas de conglomerado de cuarzo, sobre el grupo de ignimbritas Padre Miguel (Tpm) y, en menor extensión, sobre los depósitos sedimentarios de lutitas, areniscas y conglomerados de cuarzo de la Formación Villa Nueva (Kvn).

Como se discutió en la sección VI, los efectos isostáticos en las anomalías de Bouguer debidos al espesor de la corteza terrestre en determinada zona estarán presentes como tendencias graduales, regionales, de período largo, sobre distancias de varios cientos de kilómetros, y dado que en este estudio no estamos interesados en la profundidad de la corteza, ésta tendencia, conocida como *regional* (Burger y cols., 2006)(Parasnis, 2012), debe ser removida para dejar solamente fluctuaciones locales de gravedad de período corto, conocidas como *residuales*, que revelen las distribuciones locales de densidad. Una vez que la tendencia regional ha sido corregida, puede procederse a interpretar los residuales como señales gravitacionales generadas por cuerpos geológicos de interés.

No existe un método único cuantitaltivo o cualitativo, basado únicamente en los datos gravimétricos, que se haya establecido con el fin de separar la anomalía regional de las anomalías residuales (Parasnis, 2012). Cuando se utiliza el método de Talwani (Talwani y cols., 1959) (sección III) el tamaño de los polígonos o estructuras es muy sensible a las cambios de anomalía residual. En este estudio, como

criterio para definir la anomalía regional para nuestro estudio, exigimos que ésta debería, al sustraerse de la gravedad de Bouguer, producir residuales que puedan ser modelados mediante estructuras geológicas de tamaños similares al perfil geológico propuesto por (R. Rogers, 1990) y que se muestra en la figura 9. Dicha sección es por naturaleza interpretativa y los estudios cuantitativos y estadísticamente válidos sobre el grado de certidumbre y exactitud que tienen esas interpretaciones son muy limitados (Randle, Bond, Lark, y Monaghan, 2018). El conocimiento a priori y la experiencia de cada geólogo juegan un papel muy importante y por tanto, estos modelos de geología en 2D tienden a ser subjetivos. No obstante, a falta de un mejor criterio lo usaremos como guía y en ese sentido encontramos que un ajuste polinomial de primer orden es la representación más razonable del efecto regional, representado en la gráfica media de la figuras 10 y 11. Una vez calculada la tendencia (línea punteada, figuras 10 y 11), se procede a restarla de las anomalías de Bouguer Δ_g que aparecen en dichos gráficos y en la sexta columna de las tablas 4a y 4b, obteniendo la gravedad residual de la última columna de ambas tablas y que se muestra en el gráfico inferior de las figuras 10 y 11. Esta gravedad residual será el objeto de nuestro análisis para explorar las formaciones geológicas bajo nuestros perfiles (ver figuras 12 y 13) mediante polígonos de Talwani. Las gravedades residuales así calculadas exhiben valores positivos y negativos, que corresponderán a excesos y deficiencias de densidad, respectivamente.

Figura 9: Perfil BB' construído por (R. Rogers, 1990) en el mapa geológico de Tegucigalpa. Los transectos corren mayormente sobre la formación Río Chiquito (Krc) de lutitas, limonitas, areniscas y capas de conglomerado de cuarzo, sobre el grupo de ignimbritas Padre Miguel (Tpm) y sobre los depósitos sedimentarios de lutitas, areniscas y conglomerados de cuarzo de la Formación Villa Nueva (Kvn). El tamaño de los cuerpos geológicos de este perfil se consideró como guía para elegir un ajuste lineal a la gravedad regional en las figuras 10 y 11.

ID	<i>x</i> (m)	<i>z</i> (m)	FA(mGal)	TC(mGal)	$\Delta_g(\text{mGal})$	<i>Res</i> (mGal)
COPE	0	1,109.2	-342.296	141.170	-99.0809	-8.8450
CATO	2605	1053.1	-324.986	135.528	-92.9631	-3.9156
TONC	5355	1000.02	-308.606	130.570	-86.3399	1.4530
COHC	7155	995.8	-307.301	128.749	-82.7266	4.2451
UPN	8855	985.6	-304.347	127.956	-79.5284	6.6678
SUYAPA	12055	1079.8	-333.428	137.829	-79.5586	5.1777
TABL	16755	1562.4	-482.422	185.857	-79.5001	3.0920
EMP	17105	1678.8	-518.369	199.211	-81.0913	1.3411
EMP1	19755	1444.5	-446.029	175.683	-80.8887	0.3348
EMP2	22555	1123.0	-346.778	141.797	-82.3559	-2.4098
EMP3	24705	1389.1	-428.914	169.685	-86.1064	-7.1412

TABLA 4a: DATOS GRAVIMÉTRICOS PARA EL PERFIL AA'

TABLA 4b: DATOS GRAVIMÉTRICOS PARA EL PERFIL BB'

TIGR2	0	1,551.7	-479.129	186.796	-166.248	-21.0689
TIGR1	2400	1426.4	-440.449	175.490	-166.239	-33.8506
HAT1	5390	1449.9.02	-447.682	177.284	-85.893	31.4940
HAT2	6850	1447.4	-446.933	172.202	-82.107	27.3157
EVAN	9450	700.2	-306.479	127.756	-79.166	13.3598
PESP	10950	1040.7	-321.340	133.268	-78.746	7.5890
MALL	11550	1001.1	-309.121	129.850	-79.425	3.5190
UPN	13050	985.6	-304.347	127.956	-79.528	-4.6772
INICE	17750	1010.9	-312.15	129.485	-82.461	-29.5417

Tabla 4: Datos gravimétricos de los perfiles AA' y BB' seleccionados para modelar la geología subsuperficial de Tegucigalpa (Figura 8). z: la altura elipsoidal; FA: (free air) corrección por altura, donde el gradiente negativo de la gravedad dado por la ecuación 5 ha sido multiplicado por la altura elipsoidal z; TC: Correcciones de Hirt (Hirt y cols., 2019) por placa de Bouguer y topografía; Δ_g : anomalías de Bouguer con tendencia regional negativa debida a la compensación isostática de la corteza continental bajo el cuadrángulo de Tegucigalpa. Res: anomalías residuales de perído espacial corto obtenidas al sustraer la tendencia de la anomalía de Bouguer completa Δ_g .

Figura 10: Correcciones y anomalías gravitacionales de la tabla 4a para el perfil AA' (COPECO-EMP3) de la figura 8. La gráfica superior muestra la correlación positiva esperada entre la altura sobre el elipsoide (línea media marrón) y las correcciones por altura (FA, línea azul) y por placa de Bouguer y topografía (línea punteada negra, fondo). La gráfica media exhibe las anomalías de Bouguer Δ_g y la tendencia (línea punteada azul). Esta última representa los efectos negativos regionales por compensación isostática. Al fondo: gravedad residual obtenida de restar la tendencia de la gravedad de Bouguer Δ_g . Estos residuales se interpretan como el resultado de fluctuaciones de densidad debidas a cuerpos geológicos subyacentes a lo largo de la longitud del perfil.

Figura 11: Correcciones y anomalías gravitacionales de la tabla 4b para el perfil BB' (Estaciones TIGR2-INICE) de la figura 8. En la gráfica superior vemos la baja correlación entre la altura sobre el elipsoide (línea media marrón) y las correcciones por topografía del modelo de (Hirt y cols., 2019) (línea punteada negra). La gráfica media exhibe las anomalías de Bouguer Δ_g y la tendencia (línea punteada azul). Esta última representa los efectos negativos regionales por compensación isostática. Al fondo: gravedad residual obtenida de restar la tendencia de la gravedad de Bouguer Δ_g . La subestimación por parte del modelo de (Hirt y cols., 2019) del efecto de la topografía para las estaciones TIGR1 y TIGR2 produce valores de anomalía residual muy bajos en esos sitios.

IX | RESULTADOS Y ANÁLISIS.

1 | MODELO GEOLÓGICO SUBYACENTE AL PERFIL AA' (COPE-EMP).

Se condujo un modelado directo de la gravedad residual que aparece en la tabla 4a y en la figura 10 (fondo) para un perfil de estaciones gravimétricas a lo largo de 25 km en dirección Este-Oeste a través de Tegucigalpa (figura 8). El método de Talwani-Hubbert (Hubbert, 1948; Talwani y cols., 1959) fue implementado para crear polígonos 2D de forma arbitraria y densidades físicamente razonables, para calcular curvas que ajusten la gravedad residual de la tabla 4a. La figura 12 muestra los resultados obtenidos para la estructura sub-superficial para el perfil COPECO-EMP3, en términos de las formaciones geológicas y la estratigrafía de la figura 1 tomadas de (R. Rogers, 1990).

En vista de la falta de mediciones geofísicas, directas o indirectas, de las densidades aparentes de las formaciones geológicas de la figura 1, y por ende, de los polígonos de Talwani, procedimos a ajustar simultáneamente tanto la densidad como la geometría de dichos cuerpos, hasta lograr un ajuste lo más cercano posible entre la gravedad residual calculada y la observada. Este proceso se logra de forma iterativa manual mediante GRAVMAG (Burger y cols., 2006). La estimación de las densidades elegidas para cada polígono (tabla5), que representa un cuerpo de formación geológica distintiva según el mapa de (R. Rogers, 1990), proviene de la composición litológica de cada formación, lo que nos obliga a elegir valores físicamente razonables dentro de los rangos presentes en la figura 2 para densidades superficiales. Dado que estas estimaciones pueden incrementarse significativamente con la profundidad según el modelo de (Nelson y Fairchild, 1989) (ecuación 1) optamos por adjudicar como densidad aparente de cada formación el valor máximo de densidad de la tabla 5 para el grupo de rocas dominante en cada una de ellas. Luego, nos basamos en el mapa geológico de (R. Rogers, 1990) para construir geometrías subsuperficiales extrapoladas desde los contactos y buzamientos a lo largo del perfil, escenario que se exhibe en la figura 12.

Formación	Litología	$\rho~(kg/m^3)$	$\Delta\rho~(kg/m^3)$
Qal	Aluvión reciente	2,620	-50
Qe	Arena y grava	2,620	-50
Тер	Coladas de basaltos	2,620	-50
Tpm	Secuencias de ignimbritas	1,690	-980
Kvn	Lutitas y areniscas	2,660	-10
Krc	Lutitas, limonitas y areniscas	2,600	-70
Jkhg	Lutitas y areniscas alteradas	3,470	800
Tm	Basaltos y andesita	2,620	-460

TABLA 5: DENSIDADES APARENTES PARA LOS PERFILES AA' y BB'

Tabla 5: Densidades y contrastes de densidades ajustados, a partir de la figura 2 para modelar la estructura estratigráfica del perfil AA' (COPE-EMP) y BB' (TIGR1-INICE) con una densidad de referencia de 2,670 kg/m³. en la figura 8

Los valores calculados para la gravedad residual en la ecuación 12, son muy sensibles a pequeñas variaciones en el contraste entre la densidad del polígono y la densidad promedio de la placa de Bouguer, $\rho = 2,670 \text{ kg/m}^3$. Aún si dispusiéramos de densidades basadas en relaciones experimentales contra la velocidad de la onda P, podría ser necesario modificarlas hasta en un 5% para lograr el ajuste con los datos observados (Mickus, 2003). Mediante un proceso de prueba y error inherente a esta metodología, se llegó al modelo final de estructura y densidades aparentes que se exhibe en la figura 12 y en la tabla 5, respectivamente.

2 | MODELO GEOLÓGICO SUBYACENTE AL PERFIL BB' (TIGR1-INICE).

Siguiendo los criterios y el método explicados en al caso anterior, también se modeló la gravedad residual que aparece en la tabla 4b y en la figura 11 para el perfil BB' a lo largo de 20 km en dirección NE-SO, desde la zona montañosa de La Tigra hasta el sur de Tegucigalpa (figura 8). Se utilizaron las mismas densidades de la tabla (Tabla 5) obtenidas para el perfil AA', añadiendo un ajuste de densidad para la nueva formación Tm (coladas de basalto y andesita). Además, para este nuevo perfil BB' se fijó la profundidad de la formación Krc obtenida en el perfil AA' para la estación UPN, común a ambos. Nuevamente, nos basamos en el mapa geológico de (R. Rogers, 1990) para construir geometrías subsuperficiales extrapoladas desde los contactos y buzamientos a lo largo de este perfil, para arribar al modelo 2D que se exhibe en la figura 13.

Nótese la diferencia significativa entre la gravedad observada y la calculada con los polígonos de Talwani para las primeras dos estaciones del perfil, TIGR1 y TIGR2, las cuales se ubican a alturas elipsoidales de 1,426.4 m y 1,551.7 m, respectivamente. Estas estaciones están separadas 2.5 km en una zona montañosa del Norte de Tegucigalpa de topografía muy irregular, que el modelo de correcciones topográficas (Hirt y cols., 2019) no puede resolver a menos de 90 m. Esta subestimación en las correcciones de topografía produce valores bajos de gravedad residual de Bouguer cuyo modelado, empleando los contrastes de densidades $\Delta \rho$ para las formaciones Tpm y Tm en la tabla 5, requeriría la construcción de polígonos de Talwani de dimensiones desproporcionadas y poco realistas. Esta situación podría mejorarse midiendo la topografía de campo cercano a un radio de 150 m alrededor de las estaciones, un proceso que en terrenos escarpados es altamente costoso en tiempo y recursos. Las correcciones adicionales calculadas usando topografía de campo cercano se sumarían a las del modelo de (Hirt y cols., 2019) y subirían la curva de gravedad residual de Bouguer. En vista de estas limitantes, decidimos mantener dimensiones razonables para los cuerpos geológicos sin reducir sus densidades aparentes en esa región, lo cual forzaría un descenso de la curva modelada en conflicto con las densidades aparentes utilizadas en el extremo sur de este perfil y en el perfil AA' discutido con anterioridad.

UBICACIÓN DE LAS ESTACIONES DEL PERFIL COPE-EMP3 SOBRE LAS FORMACIONES GEOLÓGICAS DE TEGUCIGALPA (R. ROGER, 1990)

Figura 12: Resultados finales: sección transversal 2D a lo largo del perfil AA' (COPE-EMP3) (figura 8) basado en el cálculo de gravedad residual teórica debida a polígonos de Talwani. en la figura media se muestra el ajuste entre la gravedad residual calculada y observada (tabla 4). Las densidades utilizadas se muestran en la tabla 5. Fue necesario suponer un cuerpo de unos 500 m de grosor del basamento del grupo Honduras, Jkhg, alterado, a 1000 m de profundidad, o posiblemente un intrusivo plutónico, con una densidad de 3,270 kg/m³, para lograr el ajuste de gravedad residual positiva.

UBICACIÓN DE LAS ESTACIONES DEL PERFIL TIGI-INICE SOBRE LAS FORMACIONES GEOLOGICAS DE TEGUCIGALPA (R. ROGER, 1990)

Figura 13: Resultados finales: sección transversal a lo largo del perfil BB' (TIGR2-INICE) (figura 8) basado en el cálculo de gravedad residual teórica debida a polígonos de Talwani. La gráfica media muestra el ajuste entre la gravedad residual calculada y observada (tabla 4). Las densidades utilizadas se muestran en la tabla 5. El ajuste pobre para las estaciones TIGR2 y TIGR1 apunta a deficiencias en las correcciones de topografía del modelo de (Hirt y cols., 2019). Nuevamente, un masivo cuerpo metamórfico o intrusivo de 1600m de grosor fue necesario para modelar los altos residuales positivos (30 mGal) que exhibe este perfil. Véase la figura 1 para una explicación de las formaciones geológicas que aparece29en este modelo.

X | CONCLUSIONES

Desarrollamos un modelo en dos dimensiones de la estructura geológica subsuperficial de Tegucigalpa a lo largo de dos secciones que abarcan longitudes de 20 a 25 km y profundidades de hasta 1900 m. El modelo está basado en el mapa geológico de (R. Rogers, 1990) y en los datos gravimétricos de (Moncada y Canales, 2011), que han sido actualizados, en este trabajo, con la gravedad normal del elipsoide GRS84 (GRIDS, 2014) y el modelo de correcciones topográficas de (Hirt y cols., 2019). La interpretación de dos perfiles gravimétricos que atraviesan la ciudad de Este a Oeste y de Noreste a Sureste (Figuras 12 y 13) se llevó a cabo mediante el ajuste de curvas de gravedad residual con gravedad teórica calculada con el método de Talwani y Hubbert (Talwani y cols., 1959), (Hubbert, 1948).

La gravedad de Bouguer es negativa en toda la zona de influencia, pero exhibe fluctuaciones que generan anomalías residuales al remover de la gravedad de Bouguer la señal isostática regional, interpretada como una tendencia de primer orden. Dichas anomalías de gravedad residual exhiben valores negativos y positivos con respecto a la densidad de referencia $2,670 kg/m^3$, abarcando, en el caso más extremo, un rango entre -30 y 30 Mgals, aproximadamente. Esto indica fuertes contrastes de densidades entre las formaciones geológicas presentes en la zona.

Las anomalías residuales negativas se interpretan como señales gravitacionales debidas a formaciones dominadas por rocas sedimentarias de densidades moderadas ($\approx 1,600 \text{ a } 2,600 \text{ } kg/m^3$) del grupo Valle de Ángeles del Cretácico y Oligoceno temprano, compuesto mayormente por lutitas, areniscas y abanicos fluviales (Krc, Kvn y Tm, véase (R. Rogers, 1990) para su descripción) o bien por volcánicas extrusivas del Grupo Padre Miguel del Terciario y Cuaternario, abarcando desde tobas riolíticas, ignimbritas, basaltos ($\approx 2,300 \text{ } kg/m^3$) hasta aluvión cuaternario ($\approx 1,700 \text{ } kg/m^3$). En particular, el contacto entre la formación Krc, suprayacente a la formación Kvn, de importancia geotécnica en ingeniería, varía en nuestro modelo con profundidades máximas de entre 330 y 600 m.

Encontramos que las anomalías de gravedad residual positiva a lo largo de los perfiles AA'y BB' no pueden explicarse con los cuerpos sedimentarios y volcánicos, de densidades moderadas, presentes en la geología superficial del mapa de (R. Rogers, 1990). Proponemos la presencia de un cuerpo de basamento metamórfico o quizás una intrusión plutónica de alta densidad (aprox $3,500 kg/m^3$) para modelar esas anomalías positivas. La formación del grupo Honduras (Jkhg) del Jurásico tardío, y que aflora en la zona noreste del mapa geológico de Tegucigalpa, es quizás el cuerpo más plausible, con densidades altas debidas a la compactación y metamorfismo de estas lutitas y areniscas a profundidad mayores de 500 m.

A falta de instrumentación geofísica especializada en medir densidades de grandes volúmenes de roca (medidor gamma-gamma o gravimetría de pozo), y sabiendo que las densidades de muestras superficiales no son representativas de la densidad de una formación, concluímos que el ajuste simultáneo tanto de las densidades aparentes como de la geometría subsuperficial, dentro de límites físicamente razonables, es la manera más conveniente de abordar el problema de modelar gravedad residual con polígonos de Talwani. Los criterios utilizados para elegir estas densidades se desciben en la sección **IX**, tomando en cuenta las rocas predominantes en cada formación y el aumento de la densidad con respecto a la profundidad.

El modelo global de correcciones topográficas de (Hirt y cols., 2019) es insuficiente, en la escala local de este estudio, para remover totalmente la correlación entre anomalías de Bouguer y topografía,

particularmente para las estaciones de montaña en el perfil BB' (Figura 13). La estructura modelada bajo estas estaciones no se ajusta a la gravedad residual observada y por tanto debe considerarse con las reservas del caso.

Concluimos que para perfiles de estas longitudes (entre 20 y 25 km), el método gravimétrico sobre terrenos de topografía montañosa o muy irregular se vé muy limitado por la falta de correcciones topográficas de campo cercano que complemente las deficiencias de los modelos clásicos de Hammer (Hammer, 1939) o (Hirt y cols., 2019), mismas que deben hacerse in situ a costos elevados de tiempo y recursos. Asimismo, el modelado con polígonos de Talwani es inestable debido a la alta sensibilidad de de la curva de gravedad teórica ante variaciones pequeñas en las densidades y en la geometría de los polígonos. En una zona topográficamente irregular y geológicamente tan heterogénea y complicada como Tegucigalpa, con una estratigrafía que yuxtapone unidades metamórficas, sedimentarias e ígneas desde el Jurásico tardío hasta el Cuaternario reciente, se requiere en primer lugar de una solucción satisfactoria al problema de las densidades aparentes a las formaciones; un muestreo más abundante de estaciones y exhaustiva información a priori de estudios de campo (perforaciones, mapeos geológicos detallados, correcciones de topografía de campo cercano), con el objeto de tener restricciones que limiten la gran variedad de modelos diferentes que pueden ajustarse a las observaciones de gravedad de Bouguer.

XI | ANEXO: COORDENADAS GEOGRÁFICAS Y ALTURA ELIPSOIDAL DE LAS ESTACIONES UTILIZADAS EN ESTE ESTUDIO.

No	ID	LATITUD	LONGITUD	ALTURA ELÍPTICA
NO	ID	Grados (°)	Grados (°)	z(m)
1	SUYAPA	14.0870551	-87.15921660	1079.81997
2	UTEC	14.0469914	-87.17512870	1076.51826
3	COHC	14.0709281	-87.20346550	995.79179
4	INICE	14.0439049	-87.20668660	1010.90815
5	TONC	14.0617459	-87.21866020	1000.02051
6	CATO	14.0555497	-87.24863840	1053.09844
7	COPE	14.0608382	-87.27223560	1109.18908
8	MALL	14.0891018	-87.18256050	1001.09616
9	PESP	14.0947739	-87.18325100	1040.67123
10	AMER	14.1018259	-87.19363120	963.27373
11	LEON	14.1090450	-87.20286040	1002.63883
12	EVAN	14.1098334	-87.17872270	992.53906
13	MOL	14.1099936	-87.16563230	1015.98233
14	LSTA	14.1216514	-87.13745640	1110.86274
15	ELEN	14.1338577	-87.10853190	1249.34092
16	SARA	14.1223337	-87.09344850	1423.50339
17	MIRA	14.1204510	-87.07184540	1398.47217
18	ROSA	14.1349294	-87.04945230	1351.01870
19	VALL	14.1710473	-87.04836640	1424.68187
20	UPN	14.0761057	-87.18764550	985.63503
21	JUAN	14.0940890	-87.20138520	1066.98263
22	YIP	14.0854873	-87.20747580	937.93326
23	HATO	14.0675470	-87.16870430	1087.44699
24	TRAP	14.0753267	-87.16462550	1104.99664
25	C1CG	14.1172600	-87.21842000	1077.00000
26	CGZ8	14.1354690	-87.21822000	1104.00000
27	VELE	14.1463928	-87.26457820	1440.59695
28	PPOR	14.1251599	-87.27200860	1511.81006
29	CRTY	14.0889840	-87.21990430	996.26243
30	CARR	14.1049186	-87.24228670	1108.54913
31	CAES	14.0934057	-87.23563240	1061.02165
32	BZAM	14.0106827	-87.00409130	791.17758
33	Z1	14.0099375	-86.99408870	767.36320
34	Z2	14.0091772	-86.98570460	751.41377
35	Z3	14.0074526	-86.97666000	761.64180
36	Z4	14.0034861	-86.97124300	787.99644
37	Z5	14.0003086	-86.97238590	787.45671
38	Z6	14.0165558	-86.97451410	761.80590
39	Z7	14.0149680	-86.96199630	841.71470

Tabla 6

		LATITUD	LONGITUD	ALTURA ELÍPTICA
No	ID	Grados (°)	Grados (°)	z(m)
40	Z8	14.0231108	-86.96128290	880.96883
41	Z9	14.0115462	-86.96783400	788.93570
42	Z10	14.0196023	-86.98345680	744.18339
43	Z11	14.0115330	-87.01360040	816.44154
44	Z12	14.0118143	-87.02314350	842.22668
45	Z13	14.0071418	-87.03145190	893.20704
46	Z14	14.0067037	-87.03789710	954.10577
47	Z15	14.0094079	-87.04154120	1010.66243
48	Z16	14.0162671	-87.04153630	1067.01808
49	Z17	14.0238433	-87.04520860	1128.16299
50	BG1	13.9966649	-86.99944530	771.55474
51	G1	13.9876511	-86.99811870	767.06771
52	G2	13.9791305	-86.99623610	772.42928
53	G3	13.9691549	-86.99380870	783.79183
54	G4	13.9582077	-86.99056390	786.82862
55	G5	13.9494591	-86.98940620	807.59427
56	G6	13.9410465	-86.99009120	873.59096
57	G7	14.0032811	-87.00473250	781.34241
58	G9	14.0161306	-87.02419050	857.41909
59	G10	14.0206617	-87.03319400	924.36676
60	G11	14.0206984	-87.03562410	948.54761
61	PICA	14.1204403	-87.19485040	1282.18633
62	HAT1	14.1378696	-87.15656850	1449.87428
63	HAT2	14.1316721	-87.16893060	1447.44624
64	TABL	14.0851151	-87.12520890	1562.39341
65	EMP	14.0816261	-87.11294090	1678.82435
66	LUCI	14.1165125	-87.11233920	1496.63894
67	Z31	14.0269925	-87.00524280	803.09214
68	Z32	14.0176367	-87.01502630	822.35963
69	Z33	14.0364181	-87.02358790	1185.04279
70	Z34	14.0202678	-87.02230380	952.51777
71	C1	14.0414865	-87.06868780	1458.43117
72	C2	14.0341070	-87.12322360	1280.80167
73	PUENT	14.2832903	-87.03930680	671.55644
74	CLASTO	14.3316691	-87.04642410	773.21307
75	BOTE	14.3185087	-87.04400880	741.80361
76	TEJA	14.3078800	-87.03671100	725.00000
77	EVAN	14.2967860	-87.03783130	700.19212
78	PANT	14.2899071	-87.03788790	686.93082
79	CUES	14.2748670	-87.03357610	703.13875
80	CAMP	14.2696571	-87.03331180	735.52244
81	ENTRA	14.2608348	-87.03151223	729.69489
82	SCUE	14.2545215	-87.03862960	821,20969

Tabla 7

		LATITUD	LONGITUD	ALTURA ELÍPTICA
No	ID	Grados (°)	Grados (°)	z(m)
83	TAMA	14.2468324	-87.04541070	883.64025
84	ALEJ	14.2391773	-87.05295852	1001.38882
85	LPED	14.1058334	-87.27504354	1516.47930
86	VG1	14.1900824	-87.04364890	1612.98638
87	VG2	14.2233032	-87.05559150	1229.13166
88	VG3	14.2198445	-87.08198900	1603.61268
89	EMP1	14.0760986	-87.08935680	1444.51805
90	EMP2	14.0758461	-87.06404470	1123.05625
91	EMP3	14.0678686	-87.04653930	1389.08298
92	HAT1	14.1378696	-87.15656850	1449.87428
93	TG4	14.2052338	-87.11697180	1909.47516
94	TG3	14.1944417	-87.12460140	1697.01467
95	TG2	14.1792053	-87.13342430	1551.72774
96	TIG1	14.1595805	-87.14290090	1426.44530
97	EMP4	14.0777717	-87.02900410	1363.57965
98	CR21	14.2490441	-87.02454490	685.60846
99	CR22	14.2392503	-87.01513500	698.96379
100	CR23	14.2414623	-87.00436540	718.45534
101	CR24	14.2415358	-86.99091910	659.58852
102	CR25	14.2301058	-86.97545870	619.72563
103	CR26	14.2281023	-86.96583490	680.62829
104	VA1	14.2024999	-87.05522210	1439.36748
105	VA2	14.1478670	-87.03388820	1258.63100
106	VA3	14.1115554	-87.02606520	1355.50569
107	VA4	14.1459383	-87.07802690	1849.92281
108	CR32	14.2126516	-86.96851730	672.41248
109	CR33	14.1954248	-86.96162050	661.32532
110	CR34	14.1783178	-86.95589950	673.75426
111	CR35	14.1608193	-86.94708740	679.65047
112	CR36	14.1451308	-86,93490790	660.67140
113	CR37	14.1271315	-86.92340800	620.06814
114	CR38	14.1135373	-86.91020890	594.98338
115	CR39	14.0975805	-86.89715740	590.40090
116	CR310	14.0797323	-86.88480020	587.71623
117	CR311	14.0619687	-86.87606690	599.37097
118	CR312	14.0505205	-86.87405940	647.93106
119	CR313	14.0678400	-86.87655480	578.12508
120	OL1	14.1485558	-87.18680310	1044.70049
121	OL2	14,1746052	-87.17929420	999,59825
122	OL3	14.2030306	-87.19477010	878.96426
123	014	14,1950136	-87.20073370	862.95096
124	OL5	14.1812246	-87.20506830	942.05105
105	01.6	14 1625021	-87 20381560	038 02173

Tabla 8

| REFERENCIAS

- Airy, G. B. (1855). Iii. on the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. *Philosophical Transactions of the Royal Society of London*(145), 101–104.
- Ander, M. E., Aiken, C. L., y Maricio, F. (1991). Regional gravity investigation of honduras, central america. *Journal of volcanology and geothermal research*, 45(1-2), 11–27.
- Barton, P. (1986). The relationship between seismic velocity and density in the continental crust—a useful constraint? *Geophysical Journal International*, 87(1), 195–208.
- Bowin, C. (1976). Caribbean gravity field and plate tectonics (Vol. 169). Geological Society of America.
- Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the earth's crust. Bulletin of the seismological Society of America, 95(6), 2081–2092.
- Bullard, E. C. (1936). Gravity measurements in east africa. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 235(757), 445–531.
- Burger, H. R., Sheehan, A. F., Jones, C. H., y Burger, H. R. (2006). Introduction to applied geophysics: Exploring the shallow subsurface (Vol. 550). WW Norton New York.
- Cantos Figuerola, J. (s.f.). Tratado de geofísica aplicada/josé cantos figueroa. (Inf. Téc.).
- Carpenter, R. H. (1954). Geology and ore deposits of the rosario mining district and the san juancito mountains, honduras, central america. *Geological Society of America Bulletin*, 65(1), 23–38.
- Case, J., MacDonald, W. D., y Fox, P. J. (1991). Caribbean crustal provinces; seismic and gravity evidence.
- Cogbill, A. H. (1990). Gravity terrain corrections calculated using digital elevation models. *Geophysics*, 55(1), 102–106.
- Dobrin, M. (1976). Introduction to geophysical prospecting mc graw-hill publ. Co., New York.
- Donnelly, T. W., Horne, G. S., Finch, R. C., y López-Ramos, E. (1990). Northern central america; the maya and chortis blocks. *The Geology of North America*, 11, 37–76.
- Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., ... others (2007). The shuttle radar topography mission. *Reviews of geophysics*, 45(2).
- Gardner, G., Gardner, L., y Gregory, A. (1974). Formation velocity and density—the diagnostic basics for stratigraphic traps. *Geophysics*, 39(6), 770–780.
- Gordon, M. B. (1992). Strike-slip faulting and basin formation at the guayape fault-valle de catacamas intersection, honduras, central america.
- Grant, F. S., y West, G. F. (1965). Interpretation theory in applied geophysics. New York: McGraw-Hill.
- GRIDS, U. (2014). National geospatial-intelligence agency (nga) standardization document.
- Hammer, S. (1939). Terrain corrections for gravimeter stations. Geophysics, 4(3), 184–194.
- Heck, B., y Seitz, K. (2007). A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. *Journal of Geodesy*, 81, 121–136.
- Hirt, C., y Kuhn, M. (2014). Band-limited topographic mass distribution generates full-spectrum gravity field: Gravity forward modeling in the spectral and spatial domains revisited. *Journal of Geophysical Research: Solid Earth*, 119(4), 3646–3661.
- Hirt, C., Yang, M., Kuhn, M., Bucha, B., Kurzmann, A., y Pail, R. (2019). Srtm2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. *Geophysical Research Letters*, 46(9), 4618–4627.
- Hofmann-Wellenhof, B., y Moritz, H. (2006). Physical geodesy. Springer Science & Business Media.
- Horne, G. S., Clark, G. S., y Pushkar, P. (1976). Pre-cretaceous rocks of northwestern honduras: basement terrane in sierra de omoa. AAPG Bulletin, 60(4), 566–583.
- Hubbert, M. K. (1948). A line-integral method of computing the gravimetric effects of two-dimensional masses. *Geophysics*, 13(2), 215–225.
- Hudec, M. R., y Jackson, M. P. (2007). Terra infirma: Understanding salt tectonics. *Earth-Science Reviews*, 82(1-2), 1–28.
- Kárason, H., y Van Der Hilst, R. D. (2000). Constraints on mantle convection from seismic tomography. *Geophysical monograph*, 121, 277–288.
- Kim, J. J., Matumoto, T., y Latham, G. V. (1982). A crustal section of northern central america as inferred from wide-angle reflections from shallow earthquakes. *Bulletin of the Seismological Society of America*, 72(3), 925–940.
- LaFehr, T. (1983). Rock density from borehole gravity surveys. Geophysics, 48(3), 341-356.

- LaFehr, T. R., y Nabighian, M. N. (2012). *Fundamentals of gravity exploration*. Society of Exploration Geophysicists.
- Leaman, D. (1998). The gravity terrain correction-practical considerations. *Exploration Geophysics*, 29(4), 467–471.
- Li, X., y Götze, H.-J. (2001). Ellipsoid, geoid, gravity, geodesy, and geophysics. *Geophysics*, 66(6), 1660–1668.
- Lowrie, W., y Fichtner, A. (2020). Fundamentals of geophysics. Cambridge university press.
- Lücke, O. H., y Arroyo, I. G. (2015). Density structure and geometry of the costa rican subduction zone from 3-d gravity modeling and local earthquake data. *Solid Earth*, 6(4), 1169–1183.
- Ludwig, W., Nafe, J., y Drake, C. (1970). Seismic refraction, the sea, 4 (1), 53-84. VViley-Intersci., NY.
- Mickus, K. (2003). Gravity constraints on the crustal structure of central america.
- Miller, S. L., y Stewart, R. R. (1991). The relationship between elastic-wave velocities and density in sedimentary rocks: A proposal. *Crewes Res. Rep*, 260–273.
- Moncada, C. A. T., y Canales, E. E. (2011). Estudio gravimétrico del cuadrángulo de tegucigalpa, valle del zamorano, valle de san juan de flores y morocelí. *Revista Ciencia y Tecnología*, 27–67.
- Nelson, T. H., y Fairchild, L. (1989). Emplacement and evolution of salt sills in the northern gulf of mexico.
- Nowell, D. (1999). Gravity terrain corrections—an overview. Journal of Applied Geophysics, 42(2), 117–134.
- Parasnis, D. S. (2012). Principles of applied geophysics. Springer Science & Business Media.
- Pavlis, N. K., Holmes, S. A., Kenyon, S. C., y Factor, J. K. (2012). The development and evaluation of the earth gravitational model 2008 (egm2008). *Journal of geophysical research: solid earth*, 117(B4).
- Randle, C. H., Bond, C. E., Lark, R. M., y Monaghan, A. A. (2018). Can uncertainty in geological cross-section interpretations be quantified and predicted? *Geosphere*, 14(3), 1087–1100.
- Rogers, R. (1990). Mapa de geología del cuadrángulo de tegucigalpa, francisco morazán. instituto geográfico nacional de la secretaría de comunicaciones, obras públicas y transporte. Tegucigalpa, HN. Escala.
- Rogers, R. D., Kárason, H., y van der Hilst, R. D. (2002). Epeirogenic uplift above a detached slab in northern central america. *Geology*, 30(11), 1031–1034.
- Rogers, R. D., Mann, P., y Emmet, P. A. (2007). Tectonic terranes of the chortis block based on integration of regional aeromagnetic and geologic data.
- Rogers, R. D., Mann, P., Scott, R. W., y Patino, L. (2007). Cretaceous intra-arc rifting, sedimentation, and basin inversion in east-central honduras.
- Rudman, A., Ziegler, R., y Blakely, R. (1977). Fortran program for generation of earth tide gravity values. State of Indiana, Department of Natural Resources, Geological Survey. Descargado de https://books.google.hn/books?id=AaZo0k_Ez5UC
- Series, F. (s.f.). Encyclopedia of earth sciences series.
- Service, N. O., y Survey, N. G. (s.f.). Establishment of absolute gravity stations as part of hurricane mitch restoration program. (Inf. Téc.).
- Sjöberg, L. E., y Bagherbandi, M. (2017). Gravity inversion and integration. Springer.
- Talwani, M., Worzel, J. L., y Landisman, M. (1959). Rapid gravity computations for two-dimensional bodies with application to the mendocino submarine fracture zone. *Journal of geophysical research*, *64*(1), 49–59.
- Telford, W. M., Telford, W., Geldart, L., y Sheriff, R. E. (1990). Applied geophysics. Cambridge university press.
- Van Zyl, J. J. (2001). The shuttle radar topography mission (srtm): a breakthrough in remote sensing of topography. Acta astronautica, 48(5-12), 559–565.
- Vieira, R., Camacho, A. G., y Ortiz, E. (2002). Global adjustment for the gravity calibration line madrid-valle de los caídos.
- Weyl, R. (1980). Geology of central america. second, completely revised edition. Gebriider Borntrager. Berlin. Stuttgart.
- Williams, H., McBirney, A. R., y Aoki, K.-i. (1969). *Volcanic history of honduras* (Vol. 85). University of California press.
- Yamamoto, A. (1999). Estimating the optimum reduction density for gravity anomaly: A theoretical overview. Journal of the Faculty of Science, Hokkaido University. Series 7, Geophysics, 11(3), 577–599.